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Lecture 1
Introduction

Ideal Sampling, Reconstruction

Boris Murmann
Stanford University

murmann@stanford.edu

Copyright © 2008 by Boris Murmann
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EE315 Basics (1)

• Teaching assistants

– Fernando Gomez (Lead TA)

– Wei Xiong

• Administrative support

– Ann Guerra, CIS 207

• Lectures are televised and on the web, but please come to class 
to keep the discussion intercative

• Web page: http://eeclass.stanford.edu/ee315

– Check regularly, especially the "bulletin board" section

– Only enrolled students can register for eeclass access
• We synchronize the eeclass database with axess.stanford.edu 

manually, ~ once per day during first week of instruction
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EE315 Basics (2)

• Course prerequisites

– EE214 or equivalent
• Transistor level analog circuits, including op-amp/OTA design

• Basic MOS device physics and models

– Prior exposure to HSpice, Matlab

– Basic signals and systems, probability

• Please talk to me if you are not sure if you have the required 
background
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Course Objective

• Acquire a thorough understanding of the basic principles and 
challenges in data converter design

– Focus on concepts that are unlikely to expire within the next 
decade

– Preparation for further study of state-of-the-art "fine-tuned" 
realizations 

• Strategy

– Acquire breadth via a complete system walkthrough and a 
survey of existing architectures

– Acquire depth through a midterm project that entails design 
and thorough characterization of a specific circuit example in 
modern  technology
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Assignments

• Homework: (20%)

– Handed out on Tue, due following Tue after lecture (1 pm)

– Lowest HW score is dropped in final grade calculation

• Midterm Project: (40%)

– Design of a switched capacitor stage

– Transistor level design of sampling network

– Noise and linearity simulations using HSpice

– Prepare a project report in the format and style of an IEEE 
journal paper

• Final Exam (40%)
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Honor Code

• Please remember you are bound by the honor code

– I will trust you not to cheat 

– I will try not to tempt you

• But if you are found cheating it is very serious

– There is a formal hearing

– You can be thrown out of Stanford

• Save yourself and me a huge hassle and be honest

• For more info

– http://www.stanford.edu/dept/vpsa/judicialaffairs/guiding/pdf/
honorcode.pdf
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Tools and Technology

• Primary tools: HSpice, Matlab

– You can use other tools at "own risk"

– HSpice Basics doc and example simulation file provided in private 
area of web site and under /usr/class/ee315/hspice

– From your Leland account source 
/usr/class/ee315/hspice/DOT.cshrc to set HSpice path 

• Matlab is the preferred tool for all simulation plots

– Include /usr/class/ee315/matlab/hspice_toolbox in your Matlab path

– Or download Hspice toolbox at:
http://www-mtl.mit.edu/research/perrottgroup/tools.html#hspice 

• EE315 Technology

– 0.18-μm CMOS

– BSIM3v3 models provided in private area of web site and under 
/usr/class/ee315/hspice/lib
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Course Topics

• Ideal sampling, reconstruction and quantization

• Sampling circuits

• Switched capacitor circuits

• Voltage comparators

• Nyquist-rate ADCs and DACs

• Oversampled ADCs and DACs

• Data converter performance trends and limits

• Data converter testing 

• Layout considerations (time permitting)

• Filters (time permitting)
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Reference Books

• Gustavsson, Wikner, Tan, CMOS Data Converters for 
Communications, Kluwer, 2000.

• A. Rodríguez-Vázquez, F. Medeiro, and E. Janssens. CMOS 
Telecom Data Converters, Kluwer Academic Publishers, 2003.

• B. Razavi, Data Conversion System Design, IEEE Press, 1995.

• R. Schreier, G. Temes, Understanding Delta-Sigma Data 
Converters, Wiley-IEEE Press, 2004.

• R. v. d. Plassche, CMOS Integrated Analog-to-Digital and 
Digital-to-Analog Converters, 2nd ed., Kluwer, 2003.

• J. G. Proakis, D. G. Manolakis, Digital Signal Processing, 
Prentice Hall, 1995.
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Motivation (1)

• Information is increasingly being stored, processed and 
communicated in digital form

• Since physical signals are analog in nature, we need A/D and 
D/A conversion interfaces
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Motivation (2)

• Benefits of digital signal processing

– Reduced sensitivity to "analog" noise

– Enhanced functionality and flexibility

– Amenable to automated design & test

– Direct benefit from the scaling of VLSI technology

– "Arbitrary" precision

• Issues

– Data converters are difficult to design
• Especially due to ever-increasing performance requirements

– Data converters often present a performance bottleneck
• Speed, resolution or power dissipation of the A/D or D/A 

converter can limit overall system performance
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Big Picture
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Data Converter Applications (1)

• Consumer electronics

– Audio, TV, Video

– Digital Cameras

– Automotive control

– Appliances

– Toys

• Communications

– Mobile Phones

– Personal Data Assistants

– Wireless Transceivers

– Routers, Modems
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Data Converter Applications (2)

• Computing and Control

– Storage media

– Sound Cards

– Data acquisition cards

• Instrumentation

– Lab bench equipment

– Semiconductor test equipment

– Scientific equipment

– Medical equipment
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Example 1

• A typical cell phone contains:

– 4 Rx ADCs

– 4 Tx DACs

– 3 Auxiliary ADCs

– 8 Auxiliary DACs

• A total of 19 data converters!

Dual Standard, I/Q

Audio, Tx/Rx power
control, Battery 
charge
control, display, ...
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Example 2

• High performance digital 
oscilloscopes rely on extremely 
high performance ADCs

• Example

– 20 GSample/s, 8-bit ADC

– 10 W Power dissipation

[Poulton, ISSCC 2003]
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Example 3

• Low-cost, single chip solutions require embedded data 
conversion

• Example: 802.11g Wireless LAN chip

– 2x 11-bit DAC, 176 MSamples/s

– 2x 9-bit ADC, 80 MSamples/s

[Mehta, ISSCC2005]
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The Data Conversion Problem

• Real world signals

– Continuous time, continuous amplitude

• Digital abstraction

– Discrete time, discrete amplitude

• Two problems

– How to discretize in time and amplitude
• A/D conversion

– How to "undescretize" in time and amplitude
• D/A conversion 
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Overview

• We'll fist look at these building blocks from a functional, "black 
box" perspective

– Refine later and look at implementations
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Uniform Sampling and Quantization

• Most common way of performing A/D 
conversion

– Sample signal uniformly in time

– Quantize signal uniformly in 
amplitude

• Key questions

– How much "noise" is added due 
to amplitude quantization?

– How can we reconstruct the 
signal back into analog form?

– How fast do we need to sample?
• Must avoid "aliasing"
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Aliasing Example (1)
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Aliasing Example (2)
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Aliasing Example (3)
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Consequence

• The frequencies fsig and N·fs ± fsig (N integer), are 
indistinguishable in the discrete time domain
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Sampling Theorem

• In order to prevent aliasing, we need

2

f
f s

max,sig <

• The sampling rate fs=2·fsig,max is called the Nyquist rate

• Two possibilities

– Sample fast enough to cover all spectral components, 
including "parasitic" ones outside band of interest

– Limit fsig,max through filtering
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Brick Wall Anti-Alias Filter
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Practical Anti-Alias Filter

• Need to sample faster than Nyquist rate to get good attenuation

– "Oversampling" 

Continuous
Time

Discrete
Time

0 fs ... f

Desired
Signal

0 0.5 f/fs

fs/2B fs-B

Parasitic
Tone

B/fs

Attenuation
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How much Oversampling?

• Can tradeoff sampling speed against filter order

• In high speed converters, making fs/fsig,max>10 is usually 
impossible or too costly

– Means that we need fairly high order filters

Alias 
Rejection

fs/fsig,max

Filter Order

[v.d. Plassche, p.41]
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Classes of Sampling

• Nyquist-rate sampling (fs > 2·fsig,max)

– Nyquist data converters

– In practice always slightly oversampled

• Oversampling (fs >> 2·fsig,max)

– Oversampled data converters

– Anti-alias filtering is often trivial

– Oversampling also helps reduce "quantization noise"
• More later

• Undersampling, subsampling (fs < 2·fsig,max)

– Exploit aliasing to mix RF/IF signals down to baseband

– See e.g. Pekau & Haslett, JSSC 11/2005
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Subsampling

• Aliasing is "non-destructive" if signal is band limited around some 
carrier frequency

• Downfolding of noise is a severe issue in practical subsampling mixers

– Typically achieve noise figure no better than 20 dB (!) 
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The Reconstruction Problem

• As long as we sample fast 
enough, x(n) contains all 
information about x(t)

– fs > 2·fsig,max

• How to reconstruct x(t) from x(n)?

• Ideal interpolation formula
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• Very hard to build an analog 
circuit that does this…
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Zero-Order Hold Reconstruction

• The most practical way of 
reconstructing the continuous 
time signal is to simply "hold" the 
discrete time values

– Either for full period Ts or a 
fraction thereof

• What does this do to the signal 
spectrum?

• We'll analyze this in two steps

– First look at infinitely narrow 
reconstruction pulses 
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Dirac Pulses

• xd(t) is zero between pulses

– Note that x(n) is undefined at 
these times

∑
∞

−∞=
−⋅=

n
sd )nTt()t(x)t(x δ

∑
∞

−∞=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

n ss
d T

n
fX

T

1
)f(X

• Multiplication in time means 
convolution in frequency

– Resulting spectrum
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Spectrum

• Spectrum contains replicas of X(f) at integer multiples of the 
sampling frequency
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Finite Hold Pulse

• Consider the general case with a 
rectangular pulse 0 < Tp ≤ Ts

• The time domain signal on the left 
follows from convolving the Dirac 
sequence with a rectangular unit pulse

• Spectrum follows from multiplication with 
Fourier transform of the pulse 
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Envelope with Hold Pulse Tp=Ts
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Envelope with Hold Pulse Tp=0.5·Ts
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Example

Spectrum of 
Continuous Time 

Pulse Train (Arbitrary 
Example)
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Reconstruction Filter

• Also called 
smoothing filter

• Same situation 
as with anti-alias 
filter

– A brick wall 
filter would be 
nice

– Oversampling 
helps reduce 
filter order
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Summary

• Must obey sampling theorem fs > 2·fsig,max, 

– Usually dictates anti-aliasing filter

• If sampling theorem is met, continuous time signal can be 
recovered from discrete time sequence without loss of 
information

• A zero order hold in conjunction with a reconstruction filter is the 
most common way to reconstruct

– May need to add pre- or post-emphasis to cancel droop due 
to sinc envelope

• Oversampling helps reduce order of anti-aliasing and 
reconstruction filters
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Lecture 2
Quantization

Static Performance Metrics

Boris Murmann
Stanford University

murmann@stanford.edu

Copyright © 2008 by Boris Murmann
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Recap

• Next, look at

– Transfer functions of quantizer and DAC

– Impact of quantization error
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Quantization of an Analog Signal

• Quantization step Δ

• Quantization error has 
sawtooth shape
– Bounded by –Δ/2, +Δ/2

• Ideally
– Infinite input range and 

infinite number of 
quantization levels

• In practice
– Finite input range and 

finite number of 
quantization levels

– Output is a digital word 
(not an analog voltage)
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Conceptual Model of a Quantizer

• Encoding block determines how quantized levels are mapped 
into digital codes

• Note that this model is not meant to represent an actual 
hardware implementation

– Its purpose is to show that quantization and encoding are 
conceptually separate operations

– Changing the encoding of a quantizer has no interesting 
implications on its function or performance
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Encoding Example for a B-Bit Quantizer

• Example: B=3

– 23=8 distinct output codes

– Diagram on the left shows 
"straight-binary encoding"

– See e.g. Analog Devices "MT-
009: Data Converter Codes" for 
other encoding schemes

• http://www.analog.com/en/content/0
,2886,760%255F788%255F91285,
00.html

• Quantization error grows out of 
bounds beyond code boundaries  

• We define the full scale range 
(FSR) as the maximum input range 
that satisfies |eq| ≤ Δ/2

– Implies that FSR=2B·Δ
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Nomenclature

• Overloading - Occurs when an input outside 
the FSR is applied

• Transition level – Input value at the 
transition between two codes. By standard 
convention, the transition level T(k) lies 
between codes k-1 and k

• Code width – The difference between 
adjacent transition levels. By standard 
convention, the code width W(k)=T(k+1)-T(k)

– Note that the code width of the first and 
last code (000 and 111 on previous slide) 
is undefined

• LSB size (or width) – synonymous with 
code width Δ [IEEE Standard 1241-2000]
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Implementation Specific Technicalities

• On slide 5, we avoided specifying the absolute location of the 
code range with respect to "zero" input

• The zero input location depends on the particular 
implementation of the quantizer

– Bipolar input, mid-rise or mid-tread quantizer

– Unipolar input

• The next slide shows the case with

– Bipolar input
• The quantizer accepts positive and negative inputs

– Represents the common case of a differential circuit

– Mid-rise characteristic
• The center of the transfer function (zero), coincides with a 

transition level
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Bipolar Mid-Rise Quantizer

• Nothing new here…
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Bipolar Mid-Tread Quantizer

• In theory, less sensitive to infinitesimal disturbance around zero
– In practice, offsets larger than Δ/2 (due to device mismatch) 

often make this argument irrelevant

• Asymmetric full-scale range, unless we use odd number of codes
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Unipolar Quantizer

• Usually define origin where first code and straight line fit intersect

– Otherwise, there would be a systematic offset

• Usable range is reduced by Δ/2 below zero
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Effect of Quantization Error on Signal

• Two aspects

– How much noise power does quantization add to samples?

– How is this noise power distributed in frequency?

• Quantization error is a deterministic function of the signal

– Should be able answer above questions using a 
deterministic analysis

– But, unfortunately, such an analysis strongly depends on the 
chosen signal and can be very complex

• Strategy

– Build basic intuition using simple deterministic signals

– Next, abandon idea of deterministic representation and 
revert to a "general" statistical model (to be used with 
caution!)
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Ramp Input
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• Applying a ramp signal (periodic sawtooth) at the input of the 
quantizer gives the following time domain waveform for eq

• What is the average power of this waveform?

• Integrate over one period
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Sine Wave Input

• Integration is not straightforward…
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Quantization Error Histogram

• Sinusoidal input signal with fsig=101Hz, sampled at fs=1000Hz

• 8-bit quantizer
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• Distribution is "almost" uniform

• Can approximate average power by integrating uniform 
distribution
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Statistical Model of Quantization Error

• Assumption: eq(x) has a uniform probability density

• This approximation holds reasonably well in practice when

– Signal spans large number of quantization steps

– Signal is "sufficiently active"

– Quantizer does not overload
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Reality Check (1)

• Input sequence consists of 1000 samples drawn from Gaussian 
distribution, 4σ=FSR
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• Error power close to that of uniform approximation 
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Reality Check (2)

• Another sine wave example, but now fsig/fs=100/1000

• What's going on here? 
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Analysis (1)

• Sampled signal is repetitive and has only a few distinct values

– This also means that the quantizer generates only a few 
distinct values of eq; not a uniform distribution

Time
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Analysis (2)
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• This means that eq(n) has at best 10 distinct values, even if we 
take many more samples
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Signal-to-Quantization-Noise Ratio

• Assuming uniform distribution of eq and a full-scale sinusoidal 
input, we have

dB  76.1B02.625.1

12

2
2

2
1

P

P
SQNR B2

2

2B

qnoise

sig +=×=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

==
Δ

Δ

122 dB20

98 dB16

74 dB12

50 dB8

SQNRB (Number of Bits)
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Quantization Noise Spectrum (1)

[Y. Tsividis, ICASSP 2004] 

• How is the quantization noise power distributed in frequency?

– First think about applying a sine wave to a quantizer, without 
sampling (output is continuous time)

+ many more harmonics

• Quantization results in an "infinite" number of harmonics
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Quantization Noise Spectrum (2)

[Y. Tsividis, ICASSP 2004] 

• Now sample the signal at the output

– All harmonics (an "infinite" number of them) will alias into 
band from 0 to fs/2

– Quantization noise spectrum becomes "white"

• Interchanging sampling and quantization won’t change this 
situation
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Quantization Noise Spectrum (3)

• Can show that the quantization noise power is indeed 
distributed (approximately) uniformly in frequency
– Again, this is provided that the quantization error is 

"sufficiently random"

• References
– W. R. Bennett, "Spectra of quantized signals," Bell Syst. Tech. J., pp. 446-72, 

July 1948.

– B. Widrow, "A study of rough amplitude quantization by means of Nyquist 
sampling theory," IRE Trans. Circuit Theory, vol. CT-3, pp. 266-76, 1956.

– A. Sripad and D. A. Snyder, "A necessary and sufficient condition for 
quantization errors to be uniform and white," IEEE Trans. Acoustics, Speech, 
and Signal Processing, pp. 442-448, Oct 1977.

s

2

f

2

12
⋅

Δ
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Ideal DAC

• Essentially a digitally controlled voltage, current or charge source

– Example below is for unipolar DAC

• Ideal DAC does not introduce quantization error!
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Static Nonidealities

• Static deviations of transfer characteristics from ideality

– Offset

– Gain error

– Differential Nonlinearity (DNL)

– Integral Nonlinearity (INL)

• Useful references

– Analog Devices MT-010: The Importance of Data Converter 
Static Specifications

• http://www.analog.com/en/content/0,2886,761%255F795%255F91286,00.html

– "Understanding Data Converters," Texas Instruments 
Application Report LAA013, 1995.

• http://focus.ti.com/lit/an/slaa013/slaa013.pdf
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Offset and Gain Error

• Conceptually simple, but lots of (uninteresting) subtleties in how 
exactly these errors should be defined

– Unipolar versus bipolar, endpoint versus midpoint 
specification

– Definition in presence of nonlinearities

• General idea (neglecting staircase nature of transfer functions): 

OUT

IN

Ideal

With
offset

OUT

IN

Ideal

With gain
error
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ADC Offset and Gain Error

• Definitions based on bottom and top endpoints of transfer characteristic

– ½ LSB before first transition and ½ LSB after last transition 

– Offset is the deviation of bottom endpoint from its ideal location

– Gain error is the deviation of top endpoint from its ideal location with 
offset removed 

• Both quantities are measured in LSB or as percentage of full-scale range

Dout

Vin

Ideal

Offset

Dout

Vin

Ideal

Gain Error
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DAC Offset and Gain Error

• Same idea, except that endpoints are directly defined by analog 
output values at minimum and maximum digital input

• Also note that errors are specified along the vertical axis
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Comments on Offset and Gain Errors

• Definitions on the previous slides are the ones typically used in industry

– IEEE Standard suggest somewhat more sophisticated definitions 
based on least square curve fitting

• Technically more suitable metric when the transfer characteristics are 
significantly non-uniform or nonlinear

• Generally, it is non-trivial to build a converter with very good gain/offset 
specifications

– Nevertheless, since gain and offset affect all codes uniformly, these 
errors tend to be easy to correct

• E.g. using a digital pre- or post-processing operation

– Also, many applications are insensitive to a certain level of gain and 
offset errors

• E.g. audio signals, communication-type signals, ...

• More interesting aspect: linearity

– DNL and INL
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Differential Nonlinearity (DNL)

• In an ideal world, all ADC codes would have equal width; all 
DAC output increments would have same size

• DNL(k) is a vector that quantifies for each code k the deviation
of this width from the "average" width (step size)

• DNL(k) is a measure of uniformity, it does not depend on gain 
and offset errors

– Scaling and shifting a transfer characteristic does not alter its 
uniformity and hence DNL(k)

• Let's look at an example
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ADC DNL Example (1)

0.52

13

1.54

05

11

undefined7

1.56

undefined0

W [V]Code (k)
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ADC DNL Example (2)

• What is the average code width?

– ADC with perfect uniformity would divide the range between 
first and last transition into 6 equal pieces

– Hence calculate average code width (i.e. LSB size) as

V9167.0
6

V2V5.7
Wavg =

−
=

• Now calculate DNL(k) for each code k using

avg

avg

W

W)k(W
)k(DNL

−
=
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Result

• Positive/negative DNL implies wide/narrow code, respectively

• DNL = -1 LSB implies missing code

• Impossible to have DNL < -1 LSB for an ADC
– But possible to have DNL > +1 LSB

• Can show that sum over all DNL(k) is equal to zero  

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

code (k)

D
N

L
(k

) [
L

S
B

]

-0.452

0.093

0.644

-1.005

0.091

0.646

DNL [LSB]Code (k)
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A Typical ADC DNL Plot

• People speak about DNL often only in terms of min/max number 
across all codes
– E.g. DNL = +0.63/-0.91 LSB

• Might argue in some cases that any code with DNL < -0.9 LSB 
is essentially a missing code
– Why ?

[Ahmed, JSSC 12/2005] 
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Impact of Noise

• In essentially all moderate to high-resolution ADCs, the transition 
levels carry noise that is somewhat comparable to the size of an LSB

– Noise "smears out" DNL, can hide missing codes

• Especially for converters whose input referred (thermal) noise is 
larger than an LSB, DNL is a "fairly useless" metric

[W. Kester, "ADC Input Noise: The 
Good, The Bad, and The Ugly. Is 
No Noise Good Noise?" Analogue 
Dialogue, Feb. 2006] 
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DAC DNL

• Same idea applies

– Find output increments for each digital code

– Find increment that divides range into equal steps

– Calculate DNL for each code k using

avg

avg

Step

Step)k(Step
)k(DNL

−
=

• One difference between ADC and DAC is that DAC DNL can be 
less than -1 LSB

– How ?
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Non-Monotonic DAC

• In a DAC, DNL < -1LSB implies non-monotinicity

• How about a non-monotonic ADC?

LSB5.1
V1

V1V5.0

Step

Step)3(Step
)3(DNL

avg

avg

−=
−−

=

−
=
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Non-Monotonic ADC

• Code 2 has two transition levels ⇒ W(2) is ill defined

– DNL is ill-defined!

• Not a very big issue, because a non-monotonic ADC is usually 
not what we'll design for in practice…
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Integral Nonlinearity (INL)

• General idea
– For each "relevant point" of the transfer characteristic, 

quantify distance from a straight line drawn through the 
endpoints

• An alternative, less common definition uses a least square fit 
line as a reference

– Just as with DNL, the INL of a converter is by definition 
independent of gain and offset errors
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ADC INL Example (1)

• "Straight line" reference 
is uniform staircase 
between first and last 
transition

• INL for each code is

avg

uniform

W

)k(T)k(T
)k(INL

−
=

• Obvious that INL(1) = 0 
and INL(7) = 0

• INL(0) is undefined
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ADC INL Example (2)

• Can show that

∑
−

=

=
1k

1i

)i(DNL)k(INL

• Means that once we computed DNL, we can easily find INL 
using a cumulative sum operation on the DNL vector

• Using DNL values from last lecture, we find 

-0.640.646

undefined

-1.00

0.64

0.09

-0.45

0.09

DNL [LSB]

0

0.36

-0.27

-0.36

0.09

0

INL (LSB

2

3

4

5

1

7

Code (k)
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Result

0 2 4 6 8
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code (k)

D
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(k
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]
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-1
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1

code (k)
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(k
) 

[L
S

B
]
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A Typical ADC DNL/INL Plot

• DNL/INL signature often reveals architectural details

– E.g. major transitions

– We'll see more examples in the context of DACs

• Since INL is a cumulative measure, it turns out to be less 
sensitive than DNL to thermal noise "smearing" 

[Ishii, Custom 
Integrated Circuits 
Conference, 2005]
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DAC INL

• Same idea applies

– Find ideal output values that lie on a straight line between 
endpoints

– Calculate INL for each code k using

avg

uniformoutout

Step

)k(V)k(V
)k(INL

−
=

• Interesting property related to DAC INL

– If for all codes |INL| < 0.5 LSB, it 
follows that all |DNL| < 1 LSB

– A sufficient (but not necessary) 
condition for monotonicity
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Dynamic Performance Metrics

• Time domain

– Glitch impulse, aperture uncertainty, settling time, …

– We'll look at these later, in the context of specific circuits

• Frequency domain

– Performance metrics follow from looking at converter or 
building block output spectrum

• "Spectral performance metrics"

– Basic idea: Apply one or more tones at converter input
• Expect same tone(s) at output, all other frequency components 

represent nonidealities

– Important to realize that both static (DNL, INL) and dynamic 
errors contribute to frequency domain non-ideality
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Alphabet Soup of Spectral Metrics

• SNR - Signal-to-noise ratio

• SNDR (SINAD) - Signal-to-(noise+distortion) ratio

• ENOB - Effective number of bits

• DR - Dynamic range

• SFDR - Spurious free dynamic range

• THD - Total harmonic distortion

• ERBW - Effective Resolution Bandwidth

• IMD - Intermodulation distortion

• MTPR - Multi-tone power ratio
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DAC Tone Test/Simulation
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Typical DAC Output Spectrum

[Hendriks, "Specifying Communications DACs, IEEE Spectrum, July 1997]
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ADC Tone Test/Simulation
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Discrete Fourier Transform Basics

• Bin k represents frequency content at  k·fs/N  [Hz]

• DFT frequency resolution

– Proportional to 1/(N·Ts) in [Hz/bin]

– N·Ts is total time spent gathering samples

• A DFT with N=2integer can be found using a computationally 
efficient algorithm

– FFT = Fast Fourier Transform

• DFT takes a block of N time domain samples (spaced Ts=1/fs) 
and yields a set of N frequency bins

∑
−

=

−=
1N

0n

N/kn2je)n(x)k(X π
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Matlab Example

clear;

N  = 100;

fs = 1000;

fx = 100;

x = cos(2*pi*fx/fs*[0:N-1]);

s = abs(fft(x));

plot(s, 'linewidth', 2);
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Normalized Plot with Frequency Axis

N  = 100;

fs = 1000;

fx = 100;

A  = 1;

x = A*cos(2*pi*fx/fs*[0:N-1]);

s = abs(fft(x));

%remove redundant half of spectrum

s = s(1:end/2);

%normalize magnitudes to dBFS

s = 20*log10(s/A/N*2);

%frequency vector

f = [0:N/2-1]/N;

plot(f, s, 'linewidth', 2);

xlabel('Frequency [f/fs]')

ylabel('DFT Magnitude [dBFS]')
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Another Example
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• Same as before, but 
now fx=101

• This doesn't look the 
spectrum of a 
sinusoid…

• What's going on?
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Spectral Leakage

• DFT implicitly assumes that 
data repeats every N samples

• A sequence that contains a non-
integer number of sine wave 
cycles has discontinuities in its 
periodic repetition

– Discontinuity looks like a 
high frequency signal 
component

– Power spreads across 
spectrum

• Two ways to deal with this

– Ensure integer number of 
periods

– Windowing
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Integer Number of Cycles

N  = 100;

cycles = 9;

fs = 1000;

fx = fs*cycles/N;

• Usable test 
frequencies are 
limited to a multiple 
of fs/N
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Windowing

• Spectral leakage can be attenuated by windowing the time 
samples prior to the DFT

• Windows taper smoothly down to zero at the beginning and the 
end of the observation window

• Time domain samples are multiplied by window coefficients on a 
sample-by-sample basis

– Means convolution in frequency

– Sine wave tone and other spectral components smear out 
over several bins

• Lots of window functions to chose from

– Tradeoff: attenuation versus smearing 

• Example: Hann Window
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Hann Window
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N=64;

wvtool(hann(N))
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Spectrum with Window

N  = 100;

fs = 1000;

fx = 101;

A  = 1;

x = A*cos(2*pi*fx/fs*[0:N-1]);

s  = abs(fft(x));

x1 = x.*hann(N);

s1 = abs(fft(x1));
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Integer Cycles versus Windowing

• Integer number of cycles
– Test signal falls into single DFT bin
– Requires careful choice of signal frequency
– Ideal for simulations
– In lab measurements, can lock sampling and signal 

frequency generators (PLL)
• "Coherent sampling"

• Windowing
– No restrictions on signal frequency
– Signal and harmonics distributed over several DFT bins

• Beware of smeared out nonidealities…

– Requires more samples for given accuracy

• More info
– http://www.maxim-ic.com/appnotes.cfm/appnote_number/1040
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Example

• Now that we've 
"calibrated" our test 
system, let's look at 
some spectra that 
involve nonidealities

• First look at quantization 
noise introduced by an 
ideal quantizer

N  = 2048;

cycles = 67;

fs = 1000;

fx = fs*cycles/N;

LSB = 2/2^10;

%generate signal, quantize and take FFT 

x = cos(2*pi*fx/fs*[0:N-1]);

x = round(x/LSB)*LSB;

s  = abs(fft(x));

s = s(1:end/2)/N*2;

% calculate SNR

sigbin = 1 + cycles;

noise = [s(1:sigbin-1), s(sigbin+1:end)];

snr = 10*log10( s(sigbin)^2/sum(noise.^2) );
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Spectrum with Quantization Noise

• Spectrum looks fairly uniform

• Signal-to-quantization noise 
ratio is given by power in 
signal bin, divided by sum of 
all noise bins

• Expecting SQNR= 10·6.02dB 
+1.76dB = 61.96dB

• Noise floor of spectrum is 
around -80dBFS

– Why not -62dB?
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2048 point FFT, SNR=61.90dB
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2048 point FFT, SNR=61.90dB

Why is Noise Floor below -62dBFS ?

• Total noise is spread over N/2 
bins

• Assuming a uniform noise 
spectrum, this means that 
each bins contains 2/N times 
total noise power

• Noise floor is 10log10(N/2)dB 
below SQNR value

– 10log10(2048/2)=30dB

• Peaks above predicted noise 
floor are due to non-uniform 
distribution of quantization 
noise
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DFT Plot Annotation

• DFT plots are fairly meaningless unless you clearly specifiy the
underlying conditions

• Most common annotation

– Specify how many DFT points were used (N)

• Less common options

– Shift DFT noise floor by 10log10(N/2)dB

– Normalize with respect to bin width in Hz and express noise 
as power spectral density

• "Noise power in 1 Hz bandwidth"
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Periodic Quantization Noise

• Same as before, but cycles = 
64 (instead of 67)

• fx = fs⋅64/2048 = fs/32

• Quantization noise is highly 
determinisitc and periodic

• For more random and "white" 
quantizion noise, it is best to 
make N and cycles mutually 
prime

– GCD(N,cycles)=1 
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2048 point FFT, SNR=65.09dB
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Typical ADC Output Spectrum

• Fairly uniform noise floor due 
to additional electronic noise

• Harmonics due to 
nonlinearities

• Definition of SNR

Power Noise Total

Power Signal
SNR =

• Total noise power includes all 
bins except DC, signal, and 
2nd through 7th harmonic

– Both quantization noise 
and electronic noise affect 
SNR
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2048 point FFT, SNR=55.99dB
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SNDR and ENOB

• Definition

Power Distortion and Noise

Power Signal
SNDR =

• Noise and distortion power 
includes all bins except DC 
and signal

• Effective number of bits

6.02dB

1.76dB-SNDR(dB)
ENOB =
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2048 point FFT, SNR=55.9dB, SNDR=47.5dB
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Effective Number of Bits

• Is a 10-Bit converter with 47.5dB SNDR really a 10-bit 
converter?

6.7
dB02.6

dB76.1dB5.47
ENOB =

−
=

• We get ideal ENOB only for zero electronic noise, perfect 
transfer function with zero INL, ...

• Low electronic noise is costly

– Cutting thermal noise down by 2x, can cost 4x in power 
dissipation

• Rule of thumb for good power efficiency: ENOB < B-1

– B is the "number of wires" coming out of the ADC or the so 
called "stated resolution"
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ENOB Survey

R. H. Walden, "Analog-to-digital converter survey and analysis," IEEE J. on 
Selected Areas in Communications, pp. 539-50, April 1999
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Dynamic Range

• Peak SNR ≤ DR

( ) Power Noise

Power  SignalMax.

0dBSNRPower  SignalMin.

Power  SignalMax.
DR =

=
=

PEAK SNR OVERLOAD

FULL SCALE

INPUT
AMPLITUDE

(dB)

DYNAMIC
RANGE

0dB

SNR
(dB)

Input Power 
[dB]
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SFDR

• Definition of "Spurious Free 
Dynamic Range"

Power  SpuriousLargest

Power Signal
SFDR =

• Largest spur is often (but not 
necessarily) a harmonic of the 
input tone
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2048 point FFT, SFDR=48.3dB
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THD

• Definition

Power Signal

Power Distortion Total
THD =

• By convention, total distortion 
power consists of 2nd through 
7th harmonic

• Actually, is there a 6th and 7th

harmonic in the plot to the 
right? 
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2048 point FFT, THD=-48.2dB
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Lowering the Noise Floor

• Increasing the FFT size let's 
us lower the noise floor and 
reveal low level harmonics
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65536 point FFT, THD=-48.3dB
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Aliasing

• Harmonics can appear at 
"arbitrary" frequencies 
due to aliasing

f1 = fx = 0.3125 fs

f2 = 2 f1 = 0.6250 fs 0.3750 fs

f3 = 3 f1 = 0.9375 fs 0.0625 fs

f4 = 4 f1 = 1.2500 fs 0.2500 fs

f5 = 5 f1 = 1.5625 fs 0.4375 fs
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65536 point FFT, THD=-48.3dB
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Intermodulation Distortion

• IMD is important in multi-channel communication systems

– Third order products are generally difficult to filter out
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MTPR

• Useful metric in multi-tone transmission systems

– E.g. OFDM
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Frequency Dependence (1)

• All of the above discussed metrics generally depend on frequency

– Sampling frequency and input frequency

[Analog Devices, AD9203 Datasheet ]
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Frequency Dependence (2)

[Texas Instruments, ADS5541 Datasheet ]
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ERBW

• Defined as the input frequency at which the SNDR of a 
converter has dropped by 3dB

– Equivalent to a 0.5-bit loss in ENOB

• ERBW > fs/2 is not uncommon, especially in converters 
designed for sub-sampling applications
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Relationship Between INL and SFDR

• At low input frequencies, finite SFDR is mostly due to INL

• Quadratic/cubic bow gives rise to second/third order harmonic

• Rule of thumb: SFDR ≅ 20log(2B/INL)
– E.g. 1 LSB INL, 10 bits SFDR ≅ 60dB
– See HW2 for a more elaborate analysis

Input

O
u

tp
u

t

 

 

Ideal
Quadratic bow
Cubic bow
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SNR Degradation due to DNL (1)

• For an ideal quantizer we assumed uniform quatization error 
over ±Δ/2

• Let's add uniform DNL over ± 0.5 LSB and repeat math...

[Source: Ion Opris]
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SNR Degradation due to DNL (2)

• Integrate triangular pdf

• Compare to ideal quantizer

• Bottom line: non-zero DNL across many codes can easily cost a 
few dB in SNR

– "DNL noise"

6
de

ee
12e

2

0

2
2 Δ

ΔΔ

Δ

=⎟
⎠
⎞

⎜
⎝
⎛ −= ∫

+

12

22/

2/

2
2 Δ

=
Δ

= ∫
Δ+

Δ−

de
e

e

[dB]  25.1B02.6SNR −⋅=⇒

[dB]  76.1B02.6SNR +⋅=⇒

3dB

64



EE 315 Lecture 4B. Murmann 1

Lecture 4
Nyquist Rate DACs

Boris Murmann
Stanford University

murmann@stanford.edu

Copyright © 2008 by Boris Murmann
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Overview

• D/A conversion is typically accomplished through the division or
multiplication of a reference voltage, current or charge

• Architectures

– Thermometer

– Binary weighted

– Segmented

• Static performance

– Limited by component matching

• Dynamic performance

– Limited e.g. by timing errors, "glitches"
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Resistor String DAC

• Simple, inherently 
monotonic

• Small area up to ~8 bits

• See e.g. Pelgrom, 
JSSC 12/1990

• Unsuitable for high-
resolution, high-speed 
designs

OUT

VREF

d0 d0 d1 d1 d2 d2

xxxxx

⎫ ⎬ ⎭

LSB

xxxxx

⎫ ⎬ ⎭

MSB
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Thermometer DAC Using Switched Currents

• Inherently monotonic

• Need large encoder 
with 2B-1 outputs

– Impractical for large 
B (high resolution)
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Binary Weighted DAC

• No encoder needed

• Monotonicity is not 
guaranteed

• Consider transition
100000…. to 
011111….

– 2B-1 source must 
match sum of others 
to within 1 LSB to 
make transition 
monotonic

EE 315 Lecture 4B. Murmann 6

Implementation of Weighted Elements
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Segmented DAC

• Binary weighted 
section with Bb bits

• Thermometer section 
with Bt = B-Bb bits

• Typically Bt ~ 4…8

• Reasonably small 
encoder

• Easier to achieve 
monotonicity

EE 315 Lecture 4B. Murmann 8

Static Errors (DNL and INL)

• Mostly due to unit element mismatch

• Systematic Errors
– Contact and wiring resistance (IR drop)
– Edge effects in unit element arrays
– Process gradients
– Finite current source output resistance

• Random Errors
– Lithography
– Often Gaussian distribution (central limit theorem)

• References
– C. Conroy et al., “Statistical Design Techniques for D/A 

Converters,” IEEE J. Solid-State Ckts., pp. 1118-28, Aug. 1989.
– P. Crippa, et al., "A statistical methodology for the design of high-

performance CMOS current-steering digital-to-analog converters," 
IEEE Trans. CAD of ICs and Syst. pp. 377-394, Apr. 2002.
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Gaussian Distribution
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Yield (1)
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Yield (2)

C P(-C ≤ X ≤ C)  [%]

0.2000   15.8519

0.4000   31.0843

0.6000   45.1494

0.8000   57.6289

1.0000   68.2689

1.2000   76.9861

1.4000   83.8487

1.6000   89.0401

1.8000   92.8139

2.0000   95.4500

C P(-C ≤ X ≤ C)  [%]

2.2000   97.2193

2.4000   98.3605

2.6000   99.0678

2.8000   99.4890

3.0000   99.7300

3.2000   99.8626

3.4000   99.9326

3.6000   99.9682

3.8000   99.9855

4.0000   99.9937

EE 315 Lecture 4B. Murmann 12

Example

• Measurements show that the current in a production lot of 
current sources follows a Gaussian distribution with σ = 0.1 mA 
and μ = 10 mA

– What fraction of current sources is within ±3% (or ±1%) of 
the mean?

• Relative matching ("coefficient of variation")

%1
mA10

mA1.0

I

I
stdevu ==⎟

⎠
⎞

⎜
⎝
⎛==

Δ
μ
σσ

• Fraction of current sources within 3%

– C = 3  99.73%

• Fraction of current sources within 1%

– C = 1  68.27%
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Mismatch in MOS Current Sources
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• Example

– W=500μm, L=0.2μm, gm/ID=10S/A, AVt=5mV-μm, Aβ=1%-μm
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DNL of Thermometer DAC

• Standard deviation of DNL for each code is simply equal to 
relative matching (σu) of unit elements

• Example

– Say we have unit elements with σu = 1% and want 99.73% of 
all converters to meet the spec

– Which DNL specification value should go into the datasheet?
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DNL Yield Example (1)

• First cut solution

– For 99.73% yield, need C = 3

– σDNL = σu = 1%

– 3 σDNL = 3%

– DNL specification for a yield of 99.73% is ±0.03 LSB
• Independent of target resolution (?)

• Not quite right

– Must keep in mind that a converter will meet specs only if all 
codes meet DNL spec, i.e. DNL(k) < DNLspec for all k

– A converter with more codes is less likely to have all codes 
meet the specification

– Let's see if this is significant 

EE 315 Lecture 4B. Murmann 16

DNL Yield Example (2)

• Let's say there are N codes, and assume that all DNL(k) values 
are independent, then
– P(all codes meet spec) = P(single code meets spec)N

– P(all codes meet spec)1/N = P(single code meets spec)

• Lets look at two examples N=63 (6 bits) and N=4095 (12 bits)
– 0.99731/63 = 0.99995708…
– 0.99731/4095 = 0. 99999929929…

• Can calculate modified confidence intervals using Matlab  
– For N=63, C = sqrt(2)*erfinv(0.99731/63) = 4.09
– For N=4095, C = sqrt(2)*erfinv(0.99731/4095) = 4.97

• Refined result for 99.97% yield
– N=63: DNL spec should be ±0.0409 LSB
– N=4095: DNL spec should be ±0.0497 LSB
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DNL Yield Example (3)

• Getting a more accurate yield estimate for the preceding 
example wasn't all that hard

– Unfortunately things won't always be that simple
• E.g. in a segmented DAC, DNL(k) are no longer independent 

• The "typical" DAC designer tends to rely on simulations rather 
than trying to formulate "exact" yield equations

– Get rough estimate using simple (often optimistic) 
expressions

– Run "Monte Carlo" simulations in Matlab to find actual yield 
or to center specs

– Still important to have a qualitative feel for what may cause 
discrepancies

• A more elaborate example is the topic of HW3
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INL (1)

• For a quotient of random variables
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[Dennis E. Blumenfeld, Operations Research Calculations Handbook, Online: 
http://www.engnetbase.com/ejournals/books/book_summary/toc.asp?id=701]

• After identifying the means (μ), variances (σ2) and covariance 
(cov) needed in the above approximation, it follows that
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INL (2)

• Standard deviation of INL is maximum at mid-scale (k=N/2)
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• For a more elaborate derivation of this result see
[Kuboki et al., IEEE Trans. Circuits & Systems, 6/1982]
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Achievable Resolution

• Example: σINL= 0.1 LSB (at mid-scale code)
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INL Yield

• Again, we should ask how many DACs will meet the spec for a 
given σINL (worst code)

– It turns out that this is a very difficult math problem

• Two solutions

– Do the math
• G. I. Radulov et al., "Brownian-Bridge-Based Statistical 

Analysis of the DAC INL Caused by Current Mismatch," IEEE 
TCAS II, pp. 146-150, Feb. 2007.

– Yield simulations

• Good rule of thumb

– For high target yield (>95%), the probability of "all codes 
meet INL spec" is very close to "worst code meets INL spec"
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DNL/INL of Binary Weighted DAC

• INL same as for thermometer DAC

– Why?

• DNL is not same for all codes, but depends on transition

• Consider worst case: 0111 … 1000 …

– Turning on MSB and turning off all LSBs

( ) ( ) ( ) 2
u

B

...1000

2
u

1B

...0111

2
u

1B2
DNL 12212 σσσσ −=+−= −−

• Example

– B = 12,  σu = 1%    σDNL = 0.64 LSB

– Much worse than thermometer DAC

I2I4I8I
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σDNL (4-bit Example)
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Simulation Example

500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1

2

bin

D
N

L 
 [i

n 
LS

B
]

DNL and INL of 12 Bit converter (from converter decision thresholds)

-1 / +0.1 LSB,  avg=-9.3e-005,  std.dev=0.035,  range=1.4

500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

2

bin

IN
L 

 [
in

 L
S

B
] -0.8 / +0.8 LSB,  avg=-1.1e-013,  std.dev=0.37,  range=1.6

code

code

-1.3
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Another Random Run

• Peak DNL not at mid-scale!

– Important to realize that this is just one single statistical 
outcome…

500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

2

bin

D
N

L 
 [i

n 
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B
]

DNL and INL of 12 Bit converter (from converter decision thresholds)

-0.9 / +0.4 LSB,  avg=-7.5e-005,  std.dev=0.039,  range=1.3

500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

2

bin

IN
L 

 [
in

 L
S

B
] -0.7 / +0.7 LSB,  avg=3.3e-014,  std.dev=0.33,  range=1.3

code

code
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Multiple Simulation Runs (100)

Overlay Plot RMS DNL and INL

[Lin & Bult, JSSC 12/1998]
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DNL/INL of Segmented DAC

• INL

– Same as in thermometer 
DAC

• DNL

– Worst case occurs when 
LSB DAC turns off and 
one more MSB DAC 
element turns on

– Essentially same DNL as 
a binary weighted DAC 
with Bb+1 bits

I2I4I8I

16I 16I 16I

Example: B=Bb+Bt=4+4=8
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Comparison

Number of 
Switched 
Elements

σDNL

σINL

Binary 
Weighted

SegmentedThermometer

B
u 2

2

1σ≅

12 1B
u

b −≅ +σuσ≅ 12B
u −≅ σ

12B − 12B tB
b −+ B
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Example (B=12, σu=1%)

4095

12

38

0.01

0.64

0.16

0.32

0.32

0.32

Thermometer

Binary Weighted

Segmented (Bb=7, Bt=5)

Number of 
Switched 
Elements

σDNLσINLDAC Architecture
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DAC INL/DNL Summary

• INL is independent of DAC architecture and requires element 
matching commensurate with overall DAC precision

• DAC architecture has significant impact on DNL

• Presented results are for uncorrelated random element variations

• Systematic errors and correlations are usually also important, but 
can be mitigated by proper layout and switching sequence design

– See e.g. [Lin, JSSC 12/98], [Van der Plas, JSSC 12/99]
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Dynamic DAC Errors (1)

• Finite settling time and slewing

– Finite RC time constant

– Signal dependent slewing

• Feedthrough

– Coupling from switch signals to DAC output

– Clock feedthrough

• Glitches due to timing errors

– Current sources won’t switch simultaneously

• Dynamic DAC errors are generally hard to model!
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Dynamic DAC Errors (2)

• References

– Gustavsson, Chapter 12

– M. Albiol, J.L. Gonzalez, E. Alarcon, "Mismatch and dynamic 
modeling of current sources in current-steering CMOS D/A 
converters," IEEE TCAS I, pp. 159-169, Jan. 2004

– Doris, van Roermund, Leenaerts, Wide-Bandwidth High 
Dynamic Range D/A Converters, Springer 2006.

– T. Chen and G.G.E. Gielen, "The analysis and improvement 
of a current-steering DAC's dynamic SFDR," IEEE Trans. 
Ckts. Syst. I, pp. 3-15, Jan. 2006.
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Glitch Impulse (1)

• DAC output waveform depends on timing

– Consider binary weighted DAC transition 0111… 1000…
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Glitch Impulse (2)

• Worst case glitch impulse (area): ∝Δt 2B-1

• LSB area:  ∝T

• Need Δt 2B-1 << T which implies Δt << T/2B-1 

<< 488

<< 1.5

<< 2

12

16

10

1

20

1000

Δt  [ps]Bfs  [MHz]

EE 315 Lecture 4B. Murmann 36

Commercial Example
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Lecture 5
Nyquist Rate DACs (Continued)

Sampling Circuits

Boris Murmann
Stanford University

murmann@stanford.edu

Copyright © 2008 by Boris Murmann

EE 315 Lecture 5B. Murmann 2

DAC Example

[T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, and Y. Horiba, “An 80-MHz 8-
bit CMOS D/A Converter,” IEEE J. of Solid-State Circuits, pp. 983-988, Dec. 1986.]
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Mitigating IR Drop

EE 315 Lecture 5B. Murmann 4

Basic Differential Pair Switch
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Commonly Used Techniques

• Retiming

– Latches in (or close to) each current cell

– Latch controlled by global clock to ensure that current cells 
switch simultaneously (independent of decoder delays)

• Make before break

– Ensure uninterrupted current flow, so that tail current source 
remains active

• Low swing driver

– Drive differential pair with low swing to minimize coupling 
from control signals to output

• Cascoded tail current source for high output impedance

– Ensures that overall impedance at output nodes is code 
independent (necessary for good INL) 
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Example Current Cell Implementation

[Barkin & Wooley, JSSC 4/2004]
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Constant Clock Load Latch

Mercer, US patent ,7,023,255 4/4/2006 

DB

D

CLK

Q

QB

MN1

MN2

MN3

MN4

INV1
INV2

INV3

INV4INV5

INV6

INV7
CLKB

Capacitive load seen 
at CLK the same for 
all possible cases,
H-L, L-H, H-H or L-L
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High Performance DAC Examples (1)

1GHz

100MHz

[Van den Bosch, JSSC 3/2001]
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High Performance DAC Examples (2)

[Schafferer, ISSCC 2004]
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High Performance DAC Examples (3)

[Schafferer, ISSCC 2004]
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Binary Weighted Charge Redistribution DAC

• Can redistribute charge onto OTA + feedback capacitor to 
mitigate gain error due to Cp

(msb)

8C 4C

(lsb)

VOUT

+

VREF
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C2N–1C 2C C

b1 bN–3 bN–2 bN–1 bN

CP (top plate parasitic)

∑
=

⋅
+

=
B

1i
i
i

ref
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V
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C2
V
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Charge-based Pipeline DAC (1)

[Manganaro et al., "A dual 10-b 200-MSPS pipelined D/A converter with DLL-based 
clock synthesizer," IEEE JSSC 11/2004]
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Charge-based Pipeline DAC (2)

(fclk=200MHz)
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Recap

• How to build circuits that "sample"?

• Ideal Dirac sampling is impractical

– Need a switch that opens, closes and acquires signal within 
an infinitely small time

• Practical solution

– "Track and hold"
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Ideal Track & Hold

• Even though it's a somewhat inaccurate description, we 
sometimes call this circuit sample & hold…

TRACK
T/H    
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Signal Nomenclature

Continuous Time Signal

T/H Signal
("Sampled Data Signal")

Clock

Discrete Time Signal

time
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Basic Track & Hold

TRACK

C
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Overview

• Nonidealities

– Finite acquisition time

– kT/C noise

– Aperture uncertainty

– Signal dependent sampling instant

– Hold mode feedthrough and droop

– Track mode nonlinearity, R = f(Vin)

– Pedestal error, charge injection

• Compensation for nonidealities

– CMOS switch, clock boosting

– Dummy switch

– Fully differential bottom plate sampling
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Finite Acquisition Time (1)

• Finite speed in track mode due 
to time constant τ = RC

• What are the constraints on τ
for a given sampling rate and 
resolution ?

• Consider following example

– Switch open, Vo=0

– Switch closes with constant 
Vin = VFS applied

– Calculate required τ such 
that Vout settles to within 
fraction of LSB within mTs

• Usually m ≅ 0.5

φ

Ts=1/fS

mTs

Vin Vo

C

φ

R
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Finite Acquisition Time (2)
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M (α=0.5)B
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Thermal Noise (1)

• Questions

– What is the noise variance of the Vo samples in hold mode?

– What is the spectrum of the discrete time sequence 
representing these samples? 

EE 315 Lecture 5B. Murmann 22

Thermal Noise (2)

• Sample values Vo(n) correspond to instantaneous values of the 
track mode noise process

• From Parseval's theorem, we know that the time domain power 
(or variance) of this process is equal to its power spectral 
density integrated over all frequencies

– Further, given that the process is ergodic, this number must 
also be equal to the "ensemble" variance, i.e. the variance of 
a sample taken at a particular time

22
o

sRC1
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f
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⋅=

Δ
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1
kTR4v)n(Vvar
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2
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⋅+

⋅== ∫
∞

π
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Alternative Derivation

• The equipartition theorem (statistical mechanics) says that each
"quadratic degree of freedom" of a system in thermal equilibrium
holds an average energy of kT/2

– See e.g. EEAP248 for a derivation

• In our system, the quadratic degree of freedom is the energy 
stored on the capacitor

C

kT
v

kT
2

1
Cv

2

1

2
o

2
o

=

=
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Another Interesting Theorem

• Consider the parallel connection of a 
resistor and an arbitrary (passive) reactive 
network with port impedance Z(jω)

)j(Zjlim
C

1 ωω
ω ∞→

=
C

kT
v2
tot =⇒

• For a proof see

– Papoulis, Probability, Random Variables and Stochastic 
Processes, 3rd ed., pp. 352, McGraw Hill.

• Example

C

kT
v2
tot =⇒
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Implications of kT/C Noise

• If we make kT/C noise equal to quantization noise
2

FS

B2

V

2
kT12C

12C

kT
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⇒=

Δ

B C [pF] R [Ω]
8 0.003 246,057

10 0.052 12,582
12 0.834 665
14 13.3 36
16 213 1.99
18 3,416 0.11

• Example RC values using this assumption and VFS=1V, α=0.5, 
m=0.5, fs=100MHz

• Oversampling helps reduce capacitor sizes (more later in this class)

– Especially useful at high resolution
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Commercial Example
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Spectrum of Noise Samples

• Strategy

– Realize that discrete time noise samples are essentially 
instantaneous values (mTs apart) of the continuous time 
noise process in track mode

– Spectrum follows from Fourier transform of the process' 
autocorrelation function (Wiener-Khintchin)

• Samples show no correlation → white spectrum

• Samples are correlated → colored spectrum   

oo

s s
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Analysis (1)

• Calculate autocorrelation function

( ) ( ) kTR20Rxx ⋅= δτ
( ) RC/te

RC

1
th −=

( ) ( ) ( ) ( )ττττ −∗∗= hhRR xxyy

( )

( ) RC

mTk

yy

RC
yy

s

e
C

kT
kR

e
C

kT
R

⋅
−

−

=∴

=∴
τ

τ

Covariance of samples 
separated by k clock cycles
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Analysis (2)

• Apply discrete time Fourier transform

( ) ( )
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ekR
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• Spectrum of noise samples is 
essentially white for M>3

• Makes intuitive sense

– Large M means that noise 
sample values decay from 
one cycle to next
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Aperture Uncertainty

• In any sampling circuit, electronic noise causes random timing 
variations in the actual sampling clock edge

– Adds "noise" to samples, especially if dVin/dt is large

in in

• Analysis

– Consider sine wave input signal

– Assume τ is random with zero mean and standard deviation σt

τΔ ⋅≅
dt

dV
V in

in
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Analysis
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Result

σt

[B
it

s]

[Gustavsson, p.63]
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ADC Performance Survey (ISSCC & VLSI 97-08)

Data: http://www.stanford.edu/~murmann/adcsurvey.html
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Voltage Dependence of Switch

• Two problems

– Transistor turn off  is signal dependent, occurs when φ=Vin+Vt

– RON is modulated by Vin (assuming e.g. φ=VDD=const.) 

( )

( )tinox
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Signal Dependent Sampling Instant

• Must make fall time of sampling clock much faster than 
maximum dVin/dt

[Razavi, p.17]
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Hold Mode Feedthrough

[Razavi, p.17]
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Track Mode Nonlinearity

• Output tracks well when input voltage is low

– Gets distorted when voltage is high due to increase in RON

[Razavi, p.16]
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Analysis

• "All" we need to do is solve the above differential equation…

• Can use Volterra Series analysis

– General method that allows us to calculate the frequency 
domain response of nonlinear circuits with memory

• Luckily someone has already done this for us

– W. Yu et al., "Distortion analysis of MOS track-and-hold 
sampling mixers using time-varying Volterra series," IEEE 
Trans. Ckts. Syst. II, pp. 101-113, Feb. 1999.
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( )( ) ( )2oioito
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2
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dt
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φ
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Result

• Here, R and VGS are the respective "quiescent point" values

• For low distortion

– Make amplitude smaller than VGS-Vt

• Low swing

– Make 1/RC much larger than 2π·fin
• Big switch 
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Example (fin=fs/2)

• Assumptions

– Signal is centered about VDD/2=0.9V

– VGS-Vt = 1.8V-0.9V-0.45V = 0.45V,  A=0.2V

– Ts/τ = 20

( )

( ) s
2
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2

in2
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4
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2

2
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Measured Data

[Brown et al., "Prediction and Characterization of Frequency Dependent MOS 
Switch Linearity and the Design Implications," CICC 2006]
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CMOS Switch (1)
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CMOS Switch (2)

• Independent of Vin - too good to be true…

• Missing factors

– Back-gate effect

– Short channel effects
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Real CMOS Switch

• Design

– Size P/N device ratio to minimize change in RON over 
desired input range

– Size P and N simultaneously to meet distortion specs

• Remaining issue

– P and N turn off at slightly different times

[Razavi, p.19]
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Clock Bootstrapping

• φ LOW 

– Cboot is precharged to VDD

– Sampling switch is off

• φ HIGH

– Constant voltage, equal to VDD is established between gate 
and source terminal of sampling switch

VDD

Cboot

vin

φφ
φ

φ

S1

n1

φ
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Waveforms

(n1)
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Circuit Implementation

Switch

[A. Abo et al, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-
Digital Converter,” IEEE J. Solid-State Ckts., pp. 599, May 1999]
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Limitations

• Ideally switch on-resistance is independent of input signal

• In practice, parasitic capacitance at gate node (n1) and body 
effect limit achievable linearity
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Alternative Implementation

Dessouky & Kaiser, "Input switch configuration suitable for rail-to-rail operation of 
switched opamp circuits," Electronics Letters, Jan. 1999 ]
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Advanced Clock Boostrapping (1)

• Gate tracks average of 
input and output, reduces 
effect of I·R drop at high 
frequencies

• Bulk also tracks signal

– Reduced body effect

• Measured SFDR = 
76.5dB at fin=200MHz

[M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IF-
sampling front-end," ISSCC 2002, Dig. Techn. Papers, pp. 314.]
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Advanced Clock Boostrapping (2)

• An attempt to cancel 
body effect

[H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 
80-dB SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000]
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Pedestal Error

• Error introduced at the output during 
transition from track to hold

• Caused by charge injection

– Charge from overlap capacitance 
and channel

• Depends on clock transition time 
(waveform of φ)

• Two interesting cases

– "Quasi static gating" ("slow gating")

– "Fast gating"

TRACK
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Slow Gating

• Channel charge has disappeared by toff without introducing error

– All channel charge absorbed by input source

t

φ

φL

φH

HOLD

VIN

VO

VIN

VIN + VT

toff

ýV

t

ΔV
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Slow Gating Model for t>toff

• Example

– CH=1pF, φL=0V, Vt=0.45V, W=20μm, CGD0=0.1fF/μm ⇒ COV=2fF

– ε=-0.2%, Vos=-0.9mV
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Fast Gating

• Channel charge 
cannot change 
instantaneously

• Resulting surface 
potential decays via 
charge flow to source 
and drain

• Charge divides 
between source and 
drain depending on 
impedances loading 
these nodes
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t < to
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Charge Split Ratio

2on

fall

CR

t

[G. Wegmann et al., "Charge injection in analog MOS switches," IEEE J. of 
Solid-State Circuits, pp. 1091-1097, June 1987]

[Y. Ding and R. Harjani, "A universal analytic charge injection model," Proc. 
ISCAS, pp. 144-147, 2000]
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Fast Gating Model (t>toff)

• Example

– CH=1pF, φH=1.8V, φL=0V, Vt=0.45V, W=20μm, CoxLelec=2fF/μm 
CGD0=0.1fF/μm ⇒ COV=2fF

– ε=2%, Vos= -3.6mV-27mV = -30.6mV
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(assuming equal charge 
split for simplicity)
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Transition Fast/Slow Gating

• |ε| and |Vos| decrease as the fall time of φ increases and 
approach the limit case of slow gating

tF

|ε| |Vos|

tF

112



EE 315 Lecture 6B. Murmann 27

Fundamental Speed/Accuracy Tradeoff
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Charge Cancellation

• See e.g. Eichenberger & Guggenbűhl, JSSC 8/89

• Can use dummy switch to inject charge packet with opposite sign

• Cancellation is never perfect, since channel charge of M1 will not 
exactly split 50/50
– E.g. if Rs is very small, most of the charge will flow toward the 

input voltage source

1ov1ch
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Equalization Capacitor

• Bienstman & De Man, JSSC 12/80

• Much better cancellation

• Issue: Reduced bandwidth

L2=L1
W2=0.5W1

RS

CH

M1 M2

Q2

CH

Q1 Q1
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CMOS Switch

• Can achieve partial cancellation

• Issue: cancellation is signal dependent

• Want WnLn = WpLp

– May not be so great for good tracking linearity and high 
speed (may want to use Lp=Ln=Lmin, Wp=2…3·Wn)
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Differential Sampling (1)
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Differential Sampling (2)

• Assuming good matching between half circuits

– Only small residual offset in VOD

– Good rejection of coupling noise, supply noise, …

– Small common-mode to differential-mode gain

• Unfortunately, VOD has essentially same gain error as the basic 
single ended half circuit

• Other headaches

– In addition to the linear gain error we considered, there will 
also be nonlinear terms (body effect, …)

– Second order terms will cancel, but third order terms won’t
• Limits achievable HD3, SFDR

• Solution: "bottom plate sampling"

– More later…
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Bottom Plate Sampling (1)

• Basic idea

– Sample signal at the "grounded" side of the capacitor to 
achieve signal independence

• References

– D. J. Allstot and W. C. Black, Jr., “Technological Design 
Considerations for Monolithic MOS Switched-Capacitor 
Filtering Systems,” Proc. IEEE, pp. 967-986, Aug. 1983.

– K.-L. Lee and R. G. Meyer, “Low-Distortion Switched-
Capacitor Filter Design Techniques,” IEEE J. Solid-State 
Circuits, pp. 1103-1113, Dec. 1985. 

• First look at single ended half circuit for simplicity
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Bottom Plate Sampling (2)

• Turn M2 off "slightly" before M1

– Typically a few hundred ps
delay between falling edges 
of φe and φ

• During turn off, M2 injects charge

H

e

IN O

e

1

2

( )tnHox22 VWLCQ −≅ φαΔ

• To first order, charge injected by 
M2 is signal independent!

• Voltage across CH
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2
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Q
VV

Δ
+=

ΔQ2
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Bottom Plate Sampling (3)

• Next, turn off M1

• Since bottom plate of CH is 
floating, there is no way to 
change its stored charge

– M1 cannot inject any charge 
onto CH

– Most of M1's charge injection 
goes to input source and/or 
onto parasitics at node VO

• But, is the bottom plate really 
floating?

IN

H

e

1

H

O
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Bottom Plate Sampling (4)

• No, of course not

– There must be some parasitic 
cap, e.g. M2 drain-to-bulk 
capacitance

• So, in real life, M1 does inject 
charge onto CH

– How much?

• Since M1 sees CH in series with 
Cp, α1 and thus ΔQ1 may be fairly 
small…

– Not all that convincing…

• Fortunately, there's another trick 
we can pull

( )tnINHox11 VVWLCQ −−≅ φαΔ
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Bottom Plate Sampling (5)

• Interesting observation

– Even if M1 injects some 
charge onto CH, the total 
charge at node X cannot 
change!

• Idea

– Process total charge at node 
X instead of looking at 
voltage across CH
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Charge Redistribution Track&Hold

EE 315 Lecture 7B. Murmann 8

Circuit during φ1

• Total charge at node X: INH0X VCQ −=
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Circuit with φ1e Going Low

• Total charge at node X: 2INH1X QVCQ Δ−−=

EE 315 Lecture 7B. Murmann 10

Circuit with φ1 Going Low

• Charge injection ΔQ1 leads to changes in voltage across all 
capacitors, but total charge at X remains unchanged! 

φ1

φ1e

CH

Cp

X

Cf

ΔQ1

120



EE 315 Lecture 7B. Murmann 11

Circuit During φ2

• OpAmp forces voltage at node X to zero

– Means that charge at node X must redistribute among 
capacitors

EE 315 Lecture 7B. Murmann 12

Charge Conservation

• Output has signal independent offset

– Can easily cancel through fully differential implementation

2INH1X QVCQ Δ−−=Sampled Charge:

After Redistribution: Of2X VCQ −=

Charge Conservation:
Of2INH

2x1X

VCQVC

QQ

−=−−
=

Δ

f

2
IN

f

H
O C

Q
V

C

C
V

Δ
+=∴
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Fully Differential Circuit

EE 315 Lecture 7B. Murmann 14

Analysis (1)

QVCQ

QVCQ

INMHp1

INPHm1

Δ
Δ

+−=
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Analysis (2)

• Subtracting 1) and 2) yields

( )INMINP
f

s
OMOP VV

C

C
VV −=−

• Adding 1) and 2) yields

( ) ( )( ) ( )

IC
fH

H
OC

fH

f

fH
xc

OMOPfxmxpfHINMINPH

V
CC

C
V

CC

C

CC

Q
V

VVCVVCCQ2VVC

+
−

+
+

+
=

+−++=++−

Δ

Δ

• Variations in VIC show up as common mode variations at the 
amplifier input

– Need amplifier with good CMRR
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Clock Generation

[A. Abo, "Design for Reliability of Low-voltage, Switched-capacitor Circuits,"  PhD 
Thesis, UC Berkeley, 1999]
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More on T/H Circuits

• Implementation examples

– Low precision, high-speed T/H

– Charge redistribution T/H with common mode cancellation

– Flip-around T/H

• Sampling network design considerations 

• What limits the linearity of a bottom plate sampling circuit?

EE 315 Lecture 7B. Murmann 18

Low Precision, High-Speed T/H

• Important to note that for low resolution, high speed 
applications, a "simple" T/H circuit may suffice

– No bottom plate sampling, no charge redistribution

– Can use source follower to buffer sampled signal

[M. Choi and A.A Abidi., "A 6-b 1.3-
Gsample/s A/D converter in 0.35-μm 
CMOS," IEEE J. Solid-State Circuits, 
pp.1847-1858, Dec 2001]
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T/H with Common Mode Cancellation

• Shorting switch allows to re-distribute only differential charge on 
sampling capacitors

• Common mode at OPAMP input becomes independent of common 
mode at circuit input terminals (IN+/IN-)

• Original idea: Yen & Gray, JSSC 12/1982

[S.H. Lewis & P.R. Gray, "A Pipelined 5 MSample/s 9-bit Analog-to-Digital Converter", IEEE 
J. Solid-State Ckts, pp. 954-961, Dec. 1987]
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Analysis (1)

• Charge conservation at Vip,Vim and Vfloat

( ) ( ) ( )

xcicfloat

xcfloatic

sxmfloatsxpfloatsimip

VVV

VVV

CVVCVVCVV

+=

−=

⋅−+⋅−=⋅+
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Analysis (2)

• Common mode charge conservation at amplifier inputs

( ) ( )
[ ]( )

xc

fxcsxcxcicsic

fxcocsxcfloatfocsic

V0

CVCVVVCV

CVVCVVCVCV

=

⋅+⋅−+−=⋅−

⋅−−⋅−−=⋅−⋅−

• Amplifier input common mode (Vxc) is independent of

– Input common mode (Vic)

– Output common mode (Voc)
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Flip-Around T/H

• Sampling caps are "flipped around" OTA and used as feedback 
capacitors during φ2

• Main advantage: improved feedback factor (lower noise, higher speed)

• Main disadvantage: OTA is subjected to input common mode variations

[W. Yang et al., "A 3-V 340-mW 14-b 75-MSample/s CMOS ADC With 85-dB SFDR at 
Nyquist Input", IEEE J. Solid-State Circuits, pp. 1931-1936, Dec. 2001]
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Sampling Network Design Considerations (1)

• M1- switches only needed to 
set common mode; M1 is 
actual sampling switch
– Make M1 larger than M1-

• Ideally turn off M1- before M1
– In practice, usually OK to 

turn off simultaneously

• In track mode, total path 
resistance is R(M3) plus 
bottom plate switch resistance
– Since R(M3) is signal 

dependent, make its 
resistance small compared 
to that of bottom plate 
network

φ1-

φ1

φ1+

φ2

φ1-

φ1-

φ1
φ1+

φ1+

[Lin, Kim & Gray, JSSC 4/1991]

M1-

M1-

M1
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Sampling Network Design Considerations (2)

• Use antiparallel devices to implement M1

– Needed in simulation to guarantee circuit symmetry
• E.g. BSIM model is not necessarily perfectly symmetric with 

respect to drain/source!

– Needed in layout to ensure symmetry in presence of 
drain/source asymmetry due to processing artifacts
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Linearity Limitations

• Linearity of bottom plate sampling circuits is affected mainly by 
two effects

– Track mode nonlinearity due to R=f(Vin)
• Can try to mitigate using clock bootstrapping and proper 

partitioning of total path resistance

• Most detrimental at high frequencies

– Mismatch in half-circuit charge injection due to R=f(Vin)
• Bottom plate switches in the two half circuits see input 

dependent impedance; this creates input dependent charge 
injection mismatch

• Clock bootstrapping helps; ultimately limited by body effect

• Often fairly independent of frequency (somewhat dependent on 
exact realization of top plate switch)

• In high speed designs, can achieved SFDR up to ~100dB at low 
input frequencies, ~80dB up to a few hundreds of MHz
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A Note on Integrated Capacitors

• Node n1 is usually the "physical" top plate of the capacitor

– Makes nomenclature very confusing, since this plate is 
typically used as the "electrical" bottom plate in a sampling 
circuit (in the context of "bottom plate sampling")

• EE315 technology values

– α=1%, β=10%
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Various Capacitor Cross Sections

Poly-Poly Capacitor Metal-Metal Comb Capacitor

MIM Capacitor
(Metal-Insulator-Metal)
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Lecture 8
Switched Capacitor Circuit
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Switched Capacitor Circuits

• The discussed T/H circuits are a subset of a much broader class 
of circuits for "discrete time," charge-based analog signal 
processing

• Other switched capacitor (SC) circuit examples

– SC difference amplifiers
• Used e.g. in pipeline ADCs

– SC integrators
• Used e.g. in sigma-delta ADCs

– Passive charge redistribution networks
• Used e.g. in DACs, successive approximation ADCs

– SC biquads
• Used to implement second order filter sections

– …
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SC Difference Amplifier

• Useful for computing differences of signals

– Application example: pipeline ADC (more later)

( )21
f

s
o

s2fos1

VV
C

C
V

CVCVCV

−=

+=
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Integrator

• Ci accumulates charge packets acquired during φ1

– "Discrete time integrator"

• Used e.g. in switched capacitor sigma-delta ADCs (more later)
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Analysis of SC Circuit Nonidealities

• Amplifier offset

– Several ways to compensate (if needed)

– See e.g.
• C.C. Enz & G.C. Temes, "Circuit techniques for reducing the 

effects of op-amp imperfections: Autozeroing, correlated double 
sampling, and chopper stabilization," Proc. IEEE, pp. 1584-
1614, Nov. 1996.

• Finite bandwidth and slew rate in amplifier

• Nonzero switch time constant

– Typically make switches about 5-10x faster than amplifier

• Electronic noise from switches and amplifier

• We'll look at these design aspects using a charge redistribution
T/H circuit as an example
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Offset

• Amplified by (1+Gain)

• Often not a big issue
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Auto-Zero Technique

• Perfect cancellation, assuming 
infinite amplifier gain
– Can show that finite gain 

limits achievable accuracy

• Additional caveats
– In practice, offset tends to 

be dominated by mismatch 
in charge injection (fully 
differential circuit)

– Amplifier must be unity gain 
stable!

• May need to push 
nondominant poles to very 
high frequencies

( ) ( )

in
f

s
o

sosfosofossosin

V
C

C
V

CVCVVCVCVV

=

++=++
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Settling & Noise Analysis

Vi

Cs

Cfφ1 φ2
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Basic OTA Model for Hand Analysis
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Simulation Model

• HSpice model "ota1" (in ee315_hspice.txt)

T

m
m,xp f2

g
C

π
=
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Linear Settling

• Important parameter: Return factor or "feedback factor" β

xsf

f

CCC

C

++
=β

( )τ/t
ofinalo e1V)t(v −−=

→Vofinalt=0
0

-Vistep

(ignoring feedforward zero)
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Static Settling Error

• Ideal output voltage for t→∞

f

s
istepideal,ofinal C

C
VV ⋅=

• Detailed analysis shows

– See e.g. EE214
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• Static settling error
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Dynamic Settling Error

( ) τ
τ
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ofinal
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ofinal
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Time Constant

• Detailed analysis shows

– See e.g. EE214

m

Leff

g

C1
⋅=

β
τ

• Effective load capacitance is explicit load plus loading from 
feedback network

( ) fLLeff C1CC ⋅−+= β
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Transconductor Current

• During linear settling, the current delivered by the 
transconductor is

τ

τ
/tofinal

Leff
o

Leffo e
V

C
dt

)t(dv
Ci −−=⋅−≅

( )τ/t
ofinalo e1V)t(v −−=

→Vofinalt=0
0

-Vistep

• Peak current occurs at t=0

τ
ofinal

Leffmaxo

V
Ci =
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Slewing

• The amplifier on slide 18 can deliver a maximum current of ID
– If |io|max>ID, slewing occurs

D
ofinal

Leffmaxo I
V

Ci >=
τ

ofinalD

m
D

m

Leff

ofinal
Leff V

1

I

g
I

g

C1

V
C

β
β

>⇒>
⋅

• Example: β=0.5, Vofinal=0.5V gm/ID > 4 S/A will result in slewing

– Very hard to avoid slewing, unless
• We are willing to bias at very low gm/ID (power inefficient)

• Feedback factor is small (large closed-loop gain)

• Output voltage swing is small
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Output Waveform with Initial Slewing 

• Continuous derivative in the transition slewing→linear requires

tSRt
C

I
)t(v

Leff

D
o ⋅==

( )τΔΔΔ /)tt(
olinoslewo

slewe1VV)t(v −−−+=

τ
Δ olin

Leff

D V

C

I
=

Leff

D
olin C

I
V

⋅
=
τΔ

EE 315 Lecture 8B. Murmann 18

Dynamic Error with Slewing

olinofinaloslew VVV ΔΔ −= ( )
D

Leff
olinofinalslew I

C
VVt ⋅−= ΔΔ

• Note that these equations are valid for the half circuit

– ΔVodslew=2ΔVoslew, ΔVodlin=2ΔVolin, Vodfinal=2Vofinal

• Using the above result, we can now calculate the dynamic error 
during the final linear settling portion
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Noise Analysis

• Useful reference
– Schreier et al., "Design-oriented estimation of thermal noise in switched-

capacitor circuits," IEEE TCAS I, pp. 2358-2368, Nov. 2005.

• Switched capacitor circuits introduce noise in both clock phases

– Tracking phase: kT/C noise from sampling switches

– Redistribution phase: noise from switches and OTA
• Switches tend to contribute much less noise than OTA

– We'll take a closer look at  that…

• If the noise in the two clock phases is uncorrelated, the total 
noise at the end of the redistribution phase can be found by 
superposition

– Refer noise power of tracking phase to output and add to 
noise power introduced during redistribution
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Tracking Phase (1)

• Variable of interest is total 
integrated "noise charge" at 
node X, qx

2

• Cumbersome to compute using 
standard analysis

– Find transfer function from 
each noise source (3 
resistors) to qx

– Integrate magnitude 
squared expressions from 
zero to infinity and add

• Much easier

– Use equipartition theorem
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Tracking Phase (2)

• Energy stored at node X is
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• Apply equipartition theorem
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• Refer to output
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Redistribution Phase (1)

fkTR4 sΔ
fkTR4 f Δ

fkTR4 oΔ

mG
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f
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kTGn

3

8
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2mf Δ
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• In a proper design

m
2o

m
2f

G

1
R,

G

1
R

ββ
<<<<

• Hence, we can neglect noise 
contributions from Rf and Ro in 
first order noise calculations

– Can always simulate to get 
more precise numbers…
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Redistribution Phase (2)

fkTR4 sΔ

• If LPF corner frequency is such that 
the effective "noise bandwidth" is
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Redistribution Phase (3)

• As we know from EE214, the total 
noise due to the single stage OTA is

Leff
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• This term is much larger than all 
other noise sources that we have 
considered in the redistribution 
phase, hence
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Total Noise

• Adding the noise contributions from tracking and redistribution 
phase we get
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• If the circuit is fully differential, the above total noise power must 
be multiplied by two

– Assuming that the noise in the two half circuits is 
uncorrelated

• Usually the case, but beware of exceptions…
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Noise Simulations

• Two ways to to simulate noise in switched capacitor circuits

• Basic Spice simulation using .noise

– Must simulate noise in each clock phase separately
• Activate φ1 switches, run .noise and integrate noise charge at relevant 

node over all frequencies
– Refer to output to get output referred contribution

• Activate φ2 switches, run .noise and integrate total noise at output

• Advanced simulators

– E.g. SpectreRF, "periodic noise analysis"

– Allows to simulate noise while switched capacitor circuit is clocked 
between φ1 and φ2

• Noise from all phases is automatically added, all correlation taken care of

– Good reference
• K. Kundert, "Simulating switched-capacitor filters with SpectreRF," 

available at http://www.designers-guide.org/Analysis/sc-filters.pdf.
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HSpice Example (Track Mode Noise Charge)

...

en vno 0  vcvs vol=( cs*v(x,s) + cf*v(x,f) )/cf'

.ac dec 100 100 100Gig

.noise v(vno) vdummy
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Recap

• Ultimately, building a quantizer requires circuit elements that 
"make decisions"

• The most widely used "decision circuit" is a voltage comparator
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Ideal Voltage Comparator

• Function
– Compare the instantaneous values of two analog voltages 

(e.g. an input signal and a reference voltage) and generate a 
digital 1 or 0 indicating the polarity of that difference
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Preview - Flash ADC

2B-1
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Design Considerations

• Accuracy
– Gain (resolution)
– Offset

• Speed
– Small-signal bandwidth
– Settling time or delay time, slew rate
– Overdrive recovery

• Power dissipation

• Input properties
– Sampled data versus continuous time
– Common-mode rejection
– Input capacitance and linearity of input capacitance
– Kickback noise
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Gain Requirements

• E.g. 12-bit ADC, VDD=1.8V, FSR=0.9V, ⇒LSB=0.9V/4096

• For 1/2 LSB precision, we need

Av

vo

DD
in A

V
V =Δ

dB84000,16
4096/V9.05.0

V8.1
Av =≅

⋅
=
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How to Implement High Gain?

• Considerations

– Amplification need not be linear

– Amplification need not be continuous in time, if comparator is 
used in a sampled data system

• Clock signal will tell comparator when to make a decision

• Implementation options to be looked at

– Single stage amplification
• E.g. OTA or OpAmp in open loop configuration

– Multi-stage amplification
• E.g. cascade of resistively loaded differential pairs

– Regenerative latch using positive feedback
• E.g. cross coupled inverters
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How about Using an OpAmp or OTA?

• Way too slow!

fu=10MHz…1GHz

kHz5.62
000,16

GHz1

A

f
f

v

u
o =≈= s5.2

f2

1

o
o μ

π
τ ==

147



EE 315 Lecture 9B. Murmann 9

Cascade of Open-Loop Amplifiers

• Possible choices for a given, constant overall gain objective

– Lots of stages with low gain

– Only a few stages with moderate gain
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Bandwidth Perspective

• If we only care about small signal bandwidth, it follows that we
should cascade many low gain stages 
– Makes intuitive sense, because each individual stage will 

have a very large bandwidth

• Detailed analysis shows
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Step Response (1)

• In many cases (e.g. sampled data applications), it is more 
important to minimize the delay in response to an input step
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Step Response (2)

• Three stage amplifier wins! (for Av=10)

τd(N=3)
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Delay versus Number of Stages

• Shallow minima!
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Optimum Number of Stages
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Optimum Gain per Stage
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Cascade of "Integrators" (1)

• Intuition
– Load resistors (slide 9) shunt current away from load 

capacitance; this slows down amplification
– Drop assumption Av=A0

N to see what happens…

• Analysis 

inN
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u

oNin
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in
m

o v
s

vv
s

v
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g
v

ωω
===1
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Cascade of "Integrators" (2)
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Cascade of "Integrators" (3)

• Cascade of integrators achieves faster amplification than 
cascade of resistively loaded stages

• Delay time

[ ]
instep

dout
d

N/
dud V

)(V
)(A))(A!N(

τττττ =⋅= 1

• Optimum number of stages approximately given by

[ ] 79011 .)(Aln.N dopt += τ [Wu, JSSC 12/1988)

• Effective gain per stage is relatively close to e=2.7183…
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Regenerative Sense Amplifier (Latch)
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Comparison

• Latch is much faster than cascade of amplifiers/integrators
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Latch "Gain"

9.210,000

6.91,000

4.6100

2.310

τd/τuA(τd)
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"The" Architecture

• Why bother using pre-amplification (Av)?

– Offset
• Hard to build latches with offset < 10…100mV

• Use pre-amplification to lower input referred offset

– Common mode rejection

– Attenuate "kickback noise"

– Metastability
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Metastability (1)

• References

– Veendrick, JSSC 4/1980

– Zojer, JSSC 6/1985

• Consider minimum initial latch input voltage needed to 
regenerate to VDD within maximum available time Tmax

uT
DD

d
e

V
V τ=

/min0
max

• Minimum required pre-amplifier input

umax /T
DD

v
min0id

e

V

A

1
V τ=
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Metastability (2)

• Assuming a uniform input signal distribution over some range

( )min0id0id VVP)Error(P <=
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• For a B-bit Flash ADC 
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Metastability (3)

• Ideally design for MTF > 1…10 years (not always possible)

• Can  improve MTF by
– Reducing speed (larger Tmax/τu)

• Exponential dependence

– Adding pre-amplifier gain
• Linear dependence

minutes332000
105.010

1

)(

1
912

≅=
⋅⋅

=
⋅

= − ss
fErrorP

MTF
s

• Example: 6-bit, 500MHz Flash ADC, Tmax=Ts/2=1ns, 
τu=1/(2π·5GHz)=32ps, Av=3, VFS=0.5VDD

( ) 1232/10006 1012
3

2
)( −− ≅⋅−= eErrorP

• Mean time to failure (MTF)
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Input Referred Offset

• Example: σVOS1=3mV, σVOS2=30mV, Av=10

2
2VOS2

v

2
1VOS

2
VOS

A

1 σσσ +=

( ) ( ) mV2.4mV30
10

1
mV3 2

2
2

VOS =+=σ
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Offset Cancellation

OUTPUT SERIES
CANCELLATION

INPUT SERIES
CANCELLATION
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Output Series Cancellation

• Phase 1: Offset storage, phase 2: Amplify

• Design considerations

– Must ensure that amplifier does not saturate during phase 1

– Must make C sufficiently large to avoid attenuation and 
mitigate charge injection error

φ1
φ1

φ2
φ2
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Input Series Cancellation

• Phase 1: Offset storage, phase 2: Amplify

• In phase 2, input referred offset is ≈Vos/(A+1)

– 4x reduction if A=3

φ1

φ1

φ2
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Commercial Example: AD7671

• Used in 16-bit, 1 MS/s successive approximation ADC, 0.6 μm 
CMOS technology

• Uses cascaded output series offset cancellation

• Offset <3 mV (over process, temperature) 

[http://www.elecdesign.com/Articles/Index.cfm?ArticleID=3956]
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Comparator Examples (1)

• Mehr & Dalton, JSSC 7/1999
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Comparator Examples (2)

• Mehr & Dalton, JSSC 7/1999
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Comparator Examples (3)

• Mehr & Singer, JSSC 3/2000
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Comparator Examples (4)

• Purely dynamic "sense amplifier"
– No DC current
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Comparator Examples (5)

• Schinkel, ISSCC 2007: "Double tail sense amplifier"
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Nyquist ADC Architectures

• Nyquist rate

– Word-at-a-time
• E.g. flash ADC

• Instantaneous comparison with 2B-1 reference levels

– Multi-step
• E.g. pipeline ADCs

• Coarse conversion, followed by fine conversion of residuum

– Bit-at-a-time
• E.g. successive approximation ADCs

• Conversion via a binary search algorithm

– Level-at-a-time
• E.g. single or dual slope ADCs

• Input is converted by measuring the time it takes to 
charge/discharge a capacitor from/to input voltage

SPEED
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ADC Performance Survey (ISSCC & VLSI 97-08)

Data: http://www.stanford.edu/~murmann/adcsurvey.html
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Flash ADC

• Fast

– Speed limited by single comparator plus encoding logic

• High complexity (2B-1 comparators), high input capacitance

– Typically use for resolution up to 6 bits

2B-1
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Limiting Error Sources

• Comparator input
– Offset
– Nonlinear input capacitance
– Kickback noise (disturbs reference)

• Comparator output
– Sparkle codes (… 111101000 …)
– Metastability

• Analog Devices application note: "Find Those Elusive ADC 
Sparkle Codes and Metastable States" 
http://www.analog.com/en/content/0,2886,760%255F788%255F
91218,00.html

• Clock distribution and timing
– Clock wiring can introduce significant delay
– Comparators may sample signals at slightly different points 

due to mismatch or signal dependent sampling instant

EE 315 Lecture 10B. Murmann 6

Sparkle Codes

• Correct output: 1000, actual output: 1110 (!)
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Sparkle Tolerant Encoder

• Protects against isolated, single "bubbles"

• Reference: C. Mangelsdorf et al., “A 400-MHz Flash Converter with 
Error Correction,” IEEE J. Solid-State Ckts., pp. 997-1002, Feb. 1990. 
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Metastability

• Different gates interpret metastable output X differently

• Correct output: 0111 or 1000,  actual output: 1111
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Solution 1: Latch Pipelining

• Use additional latches to create extra gain before generating 
decoder signals

• Power hungry and area inefficient

EE 315 Lecture 10B. Murmann 10

Solution 2: Gray Encoding

• Each Ti affects only one Gi

– Avoids disagreement 
of interpretation by 
multiple gates

• Also helps protect against 
sparkles

BinaryGrayThermometer Code

1110011111111

0111010111111

1011110011111

0010110001111

1100100000111

0101100000011

1001000000001

0000000000000

B1B2B3G1G2G3T7T6T5T4T3T2T1

G3 G2 G1
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Efficient Implementation

• Reference
– C. Portmann and T. Meng, “Power-Efficient Metastability Error 

Reduction in CMOS Flash A/D Converters,” IEEE J. Solid-State 
Ckts., pp. 1132-40 , Aug. 1996.
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Offset

• Typically want offset of each comparator <1/4LSB
– If we budget half of the input referred offset for the latch, the 

other half for the pre-amp, this means pre-amp offset must 
be <1/4LSB / sqrt(2)
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Huge!

• E.g. 6-bit flash ADC, FSR=1V
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Options

• Simply use large devices

– For each extra bit, need to increase width by 4x, also need 
to double number of comparators

– Assuming constant current density, this means each 
additional bit costs 8x in power!

• Offset cancellation

– Tends to cost speed

• Offset averaging

• Calibration and/or postprocessing techniques

EE 315 Lecture 10B. Murmann 14

Offset Averaging (1)

[Kattmann & Barrow, ISSCC 1991]

R2/R1=1.3
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Offset Averaging (2)

[Bult & Buchwald, JSSC 12/1997]

[Scholtens & Vertregt, JSSC 12/2002]

σ D
N

L/
σ
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6-bit Flash ADC with Averaging

[Choi & Abidi, JSSC 12/2001]

Averaging networks designed to 
reduce input referred offset by 3x
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Offset Calibration

S. Sutardja, "360 Mb/s (400 MHz) 1.1 W 0.35μm CMOS PRML read channels with 6 
burst 8-20× over-sampling digital servo," ISSCC Dig. Techn. Papers, Feb. 1999. 
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Comparator with Integrated Offset DAC 

[K.-L.J. Wong and C.-K.K. Yang, "Offset compensation in comparators 
with minimum input-referred supply noise," JSSC, May 2004.]
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High Performance Flash ADC with Calibration (1)

[Park & Flynn, "A 3.5 GS/s 5-b Flash ADC in 90 nm CMOS," CICC 2006]

EE 315 Lecture 10B. Murmann 20

High Performance Flash ADC with Calibration (2)

[Park & Flynn, "A 3.5 GS/s 5-b Flash ADC in 90 nm CMOS," CICC 2006]
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High Performance Flash ADC with Calibration (3)

[Park & Flynn, "A 3.5 GS/s 5-b Flash ADC in 90 nm CMOS," CICC 2006]
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Comparator Redundancy (1)

• Idea: Build a "sea of imprecise comparators", then determine 
which ones to use…

C. Donovan, M. P Flynn, "A 'digital' 6-bit ADC in 0.25-μm CMOS," IEEE J. 
Solid-State Circuits, pp. 432-437, March 2002. 
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Comparator Redundancy (2)

90mW 900mW

Paulus et al., "A 4GS/s 6b flash ADC in 0.13um CMOS," VLSI Circuits 
Symposium, 2004
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Reducing Complexity

• Example: 10-bit flash ADC

– Compared to 6-bit example on slide 16, lecture 10, we need to
• Use 16x the number of comparators

• Increase size & power of each comparator by 162 (matching)

– Input capacitance:  1pF·163 = 4096pF (!)

– Power: 500mW·163 = 2048W (!)

• Techniques

– Interpolation

– Folding

– Folding & Interpolation

– Multi-step conversion, pipelining
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Interpolation

• Idea

– Interpolation between preamp outputs

• Reduces number of preamps

– Reduced input capacitance

– Reduced area, power dissipation

• Same number of latches

• Important “side-benefit”

– Decreased sensitivity to preamp offset
• Improved DNL

EE 315 Lecture 11B. Murmann 4

Concept

[van de Plassche, p.118]
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Differential Implementation

BA
BA VV0

2

VV
−=⇔=

+
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Higher Order Interpolation

• Resistors produce 
additional levels

• Define interpolation 
factor  as ratio ratio of 
latches and preamps

• The example shown on 
this slide has M=8

[H. Kimura et al, “A 10-b 300-MHz 
Interpolated-Parallel A/D Converter,”
IEEE J. of Solid-State Circuits, pp. 
438-446, April 1993. 
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Potential Issues with Interpolation

• Must ensure that "linear range" of adjacent preamplifiers 
overlaps

– Sets upper bound on preamp gain

• Resistor string reduces signal path bandwidth

– Sets upper bound on interpolation factor, typically around 4

• For interpolation factors >2, amplifier nonlinearity can limit the 
precision of zero crossings

– See e.g. [van de Plassche, p.121]
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Folding ADC

• Fast

• Significantly fewer comparators than flash

• Nonidealities in folder limit attainable resolution to ~10 bits

LSB
ADC

MSB
ADC

Folding Circuit

VIN

Digital
Output
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Example: 6-bit Folding ADC

• Coarse ADC determines segment, fine ADC determines level 
within segment

• Folding factor (FF) quantifies number of folder output segments

EE 315 Lecture 11B. Murmann 10

Folder Realization

• Vref1 < Vref2 < … < Vref8

• For any Vin, only one differential pair is "active", all others are 
saturated
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Improved Realization

• Extra differential pair removes DC component in Vout

• Parameter K controls output common mode 

EE 315 Lecture 11B. Murmann 12

Input-Output Characteristic
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Rounding Problem

Useful 
Region
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Multiple Folds (2)

• Idea: Use several folders so that any input value falls into 
useable "linear" region
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Multiple Folds (2)

Hard to line up 
with folder 

output

Residual 
distortion from 
folder causes 

DNL/INL
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Multiple Folds Using Single Threshold (1)
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Multiple Folds Using Single Threshold (2)

• Initial idea

– Use one folder and 7 
comparators in LSB 
section

• Now have

– 8 Folders and 8 
comparators (!)

• Yet another idea

– Use interpolation to 
eliminate some of 
the folders
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Interpolation

• Same idea as discussed in the context of flash ADCs (slides 3-7)
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Complete Folding & Interpolating ADC

• 6-bit Example

– 2 folders

– 4x interpolation

– FF=8

EE 315 Lecture 11B. Murmann 20

State-of-the art Implementation (1)

[Taft et al., JSSC 12/2004]
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State-of-the art Implementation (2)

EE 315 Lecture 11B. Murmann 22

State-of-the art Implementation (3)
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State-of-the art Implementation (4)
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Folding ADC Problems & Solutions

• Dynamic problems
– Frequency at the output of a folder is approximately input 

frequency times folding factor!
• Finite bandwidth effects can produce zero crossing shifts 

– Delay through coarse/fine signal path is not well matched

• Possible solution
– Add track & hold circuit at ADC input

• This was done in the implementation shown in slides 20-23

• Static problems
– Offsets in folder transistors can cause DNL, INL
– Interpolation with a factor greater 2x can introduce DNL, INL 

due to amplifier nonlinearity

• Possible solutions
– Averaging, calibration
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Outline

• Background
– History and state-of the art performance
– General idea of multi-step A/D conversion

• Pipeline ADC basics
– Ideal block diagram and operation, impact of block 

nonidealities

• Ways to deal with nonidealities
– Redundancy, calibration

• CMOS implementation details
– Stage scaling, MDAC design

• Architectural options
– OTA sharing, SHA-less front-end 

• Research topics
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History (1)

US Patent # 2,869,079: Staffin and Lohman, "Signal 
Amplitude Quantizer," 1959

EE 315 Lecture 12B. Murmann 4

History (2)

• First multi-step ADC with "error correction"

– T.C. Verster, "A method to increase the accuracy of fast 
Serial-Parallel Analog-to-Digital Converters," IEEE Trans. 
Electronic Computers, EC-13, pp. 471-473, 1964.

• First pipeline ADC

– B.D. Smith, "An Unusual Electronic Analog-Digital 
Conversion Method," IRE Transactions on Instrumentation, 
pp.155-160, June 1956.

• First pipeline ADCs in CMOS

– S.H. Lewis and P.R. Gray, "A pipelined 5-Msample/s 9-bit 
analog-to-digital converter," JSSC, pp. 954–961, Dec. 1987.

– S. Sutarja and P.R. Gray, "A pipelined 13-bit 250-ks/s 5-V 
analog-to-digital converter," JSSC, pp. 1316–1323,  Dec. 
1988.
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ADC Performance Survey (ISSCC 1997-2007)
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ADC Performance Survey (ISSCC 1997-2007)
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State-of-the-Art Examples

• [A] M. Yoshioka et al., "A 0.8V 10b 80MS/s 6.5mW Pipelined ADC 
with Regulated Overdrive Voltage Biasing," ISSCC Dig. Techn. 
Papers, pp. 452-453, Feb. 2007.

– 8.3 ENOB @ Nyquist, 0.08mW per MS/s, 90nm CMOS (0.8V)

– 9.0 ENOB @ Nyquist, 0.16mW per MS/s, 90nm CMOS (1.2V)

• [B] P. Bogner et al., "A 14b 100MS/s digitally self-calibrated 
pipelined ADC in 0.13um CMOS," ISSCC Dig. Techn. Papers, pp. 
832-833, Feb. 2006.

– 10.7 ENOB @ Nyquist, 2.24mW per MS/s, 0.13um CMOS

• [C] D. Kelly et al., "A 3V 340mW 14b 75MSPS CMOS ADC with 
85dB SFDR at Nyquist," ISSCC Dig. Techn. Papers, pp. 134-135, 
Feb. 2001.

– 11.8 ENOB @ Nyquist, 4.53mW per MS/s, 0.35um CMOS
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General Concept of Multi-Step Conversion

• General idea (two-step example)
1. Perform a "coarse" quantization of the input
2. Compute residuum (error) of step 1 conversion using a DAC 

and subtractor
3. Digitize computed residuum using a second "fine" quantizer 

and digitally add to output
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Quantizer Model

B
LSB

2

2

2

1

2

1
±=±
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Analysis

• Assuming ideal DAC (for now)

Vin

+
-

+
-

+

εcoarse

+

εfine

Vres=−εcoarse

Dcoarse=Vin + εcoarse

Dfine=εfine - εcoarse

Dout=Vin + εfine

• Output contains only quantization error from fine ADC!
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Input to Fine Quantizer (Vres)

• Example

– Three decision levels in coarse and fine quantizer

– Aggregate ADC resolution is 4 bits (3+4·3 decision levels)

– Need only 6 comparators, compared to 15 in a 4-bit flash ADC
• Advantage becomes more pronounced at higher resolutions

coarseB2

2

2

1
LSB

2

1
±=±
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Alternative Illustration
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Two-Step ADC Example

[B. Razavi and B.A. Wooley, "A 12-b 5-Msample/s two-step CMOS A/D 
converter," IEEE JSSC, pp. 1667-1678, Dec. 1992.
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Limitations (1)

• Conversion time is proportional to number of stages employed
– E.g. for a two-step ADC, time required for conversion is

Tconv =2·TA/D + TD/A + TSUB

• Solution
– Introduce a sample and hold operation after subtraction
– Fine ADC has one full clock cycle until new residuum 

becomes available
– "Pipelining"
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Limitations (1)

• Fine ADC(s) must have precision commensurate with overall 
target resolution

– E.g. 8-bit converter with 4-bit/4-bit partition; fine 4-bit 
decision levels must have "8-bit precision"

• Solution

– Introduce gain after subtraction  

Vin

+
-

DAC
Coarse

ADC

Dcoarse

+

Fine
ADC

Dfine

Dout

S/H G
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Input to Fine Quantizer with Gain

• No longer need precision comparators
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Pipeline ADC Block Diagram

  ADC DAC

-

D1

Vres1Vin1

Stage 1 Stage n-1 Stage nSHA
Vin

G1

Align & Combine Bits
Dout

  G1
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Concurrent Stage Operation

Stage 1 Stage 2 Stage 3SHA
Vin

Align & Combine Bits
Dout

ACQUIRE

BUFFER

ACQUIRE

CONVERTACQUIRE

CONVERT

ACQUIRE

CONVERT

CLK

• Stages operate on the input signal like a shift register

• New output data every clock cycle, but each stage introduces ½
clock cycle latency
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Data Alignment

Stage 1 Stage 2 Stage 3SHA
Vin

Dout

ACQUIRE

BUFFER

ACQUIRE

CONVERTACQUIRE

CONVERT

ACQUIRE

CONVERT

CLK

CLK CLK CLK

• Digital shift register aligns sub-conversion results in time

• Digital output is taken as weighted sum of stage bits
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Latency

[Analog Devices, AD9226 Data Sheet]
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Pipeline ADC Characteristics

• Number of components grows linearly with resolution

– Unlike flash ADC, where components ~ 2B

• Pipeline ADC trades latency for conversion speed

– Throughput limited by speed of one stage
• Enables high-speed operation

– Latency can be an issue in some applications
• E.g. in feedback control loops

• Pipelining only possible with good analog "memory elements"

– Calls for implementation in CMOS using switched-capacitor 
circuits

EE 315 Lecture 12B. Murmann 22

Stage Analysis

• Ignore timing/clock delays for simplicity

[ ]dacinres VVGV −⋅=)V(QD in=
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Stage Model with Ideal DAC

• Residue of pipeline stage (Vres) is equal to (-gain) times sub-
ADC quantization error

qinVD ε+= qres GV ε⋅−=
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"Residue Plot" (2-bit Sub-ADC)

{-3/4, -1/4, 1/4, 3/4}

Sub-ADC
Decision
Levels
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Pipeline Decomposition

• Often convenient to look at pipeline as single stage plus 
backend ADC
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Resulting Model

d

qb

d
qinout GG

G
1VD

ε
ε +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=

With Gd1=G1

201



EE 315 Lecture 12B. Murmann 27

Canonical Extension

• First stage has most stringent precision requirements

• Note that above model assumes that all stages use same reference
voltage (same full scale range)
– This is true for most designs, one exception is [Limotyrakis 2005] 

∏∏
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1qinout

G
G

G
1

G
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General Result – Ideal Pipeline ADC

• With ideal DACs and ideal digital weights (Gdj=Gj)

j

1n

1j
2nADC1n

1j
j

qn
inout GlogBB

G

VD ∑
∏

−

=
−

=

+=⇒+=
ε

• The only error in Dout is that of last quantizer, divided by 
aggregate gain

• Aggregate ADC resolution is independent of sub-ADC 
resolutions in stage 1...n-1 (!)

• Makes sense to define "effective" resolution of jth stage as 
Rj=log2(Gj)

202



EE 315 Lecture 12B. Murmann 29

Questions

• How to pick stage gain G for a given sub-ADC resolution?

• Impact and compensation of nonidealities?

– Sub-ADC errors

– Amplifier offset

– Amplifier gain error

– Sub-DAC error

• Begin to explore these questions using a simple example

– First stage with 2-bit sub-ADC, followed by 2-bit backend
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Upper Bound for Stage Gain

0 +1
Vin

-1

Vres

Σ

-

D

Vres
Vin

G1  G

Σ

εq

{-1/2B … 1/2B}

G/2B

-G/2B

εqb

Σ

εqb
Db

+1

-1

22G/2B

G
VD qb

inout

ε
+= Grows out of ±½ LSB bounds for G>2B
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Issue with G=2B

0 +1
Vin

-1

Vres

-

D

Vres
Vin

G1   4

q

{-1/2B … 1/2B}

qb

qb
Db

+1

-1

4

Overrange!

• Any error in sub-ADC decision levels will overload backend ADC and 
thereby deteriorate ADC transfer function 
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Idea #1: G slightly less than 2B

• Effective stage resolution can be non-integer (R=log2G)

– E.g. R = log23.2 = 1.68 bits

• See e.g. [Karanicolas 1993]
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Idea #2: G < 2B, but Power of Two

• Effective stage resolution is an integer

– E.g. R = log22 = 1 = B-1

– Digital hardware requires only a few adders, no need to 
implement fractional weights (see appendix)

• See e.g. [Mehr 2000]
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Idea #3: G=2B, Extended Backend Range

• No redundancy in stage with errors

• Extra decision levels in succeeding stage used to bring 
residue "back into the box"

• See e.g. [Opris 1998]
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Variant of Idea #2: "1.5-bit stage"

• Sub-ADC decision levels placed to minimize comparator count

• Can accommodate errors up to ±¼

• B = log2(2+1) = 1.589 (sub-ADC resolution)

• R = log22 = 1 (effective stage resolution)

• See e.g. [Lewis 1992]
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Summary on Sub-ADC Redundancy

• We can tolerate sub-ADC errors as long as

– The residue stays "inside the box", or

– Another stage downstream returns the residue "into the box" 
before it reaches last quantizer

• This result applies to any stage in an n-stage pipeline

– Can always decompose pipeline into single stage + backend 
ADC

• In literature, sub-ADC redundancy schemes are often called 
"digital correction" – a misnomer in my opinion

• There is no explicit error correction!

– Sub-ADC errors are absorbed in the same way as their 
inherent quantization error

• As long as there is no overranging…
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Amplifier Offset

• Amplifier offset can be referred toward stage input and results in

– Global offset
• Usually no problem, unless "absolute ADC accuracy" is required

– Sub-ADC offset
• Easily accommodated through redundancy

DAC

-

D

VresVin
G1  G

Vdac

VosVos

-Vos

  ADC

Push

EE 315 Lecture 12B. Murmann 38

Gain Errors

• Want to make Gd1 = G1+Δ

∏
−
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εΔε
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Digital Gain Calibration (1)

• Error in analog gain is not a problem as long as "digital gain 
term" is adjusted appropriately

• Problem
– Need to measure analog gain precisely

• Example
– Digital calibration of a 1-bit first stage with 1-bit redundancy 

(R=1, B=2)

• Note
– Even if all Gdj are perfectly adjusted to reflect the analog gains, the ADC will have non-

zero DNL and INL, bounded by ±0.5LSB. This can be explained by the fact that the 
residue transitions may not correspond to integer multiples of the backend-LSB. This 
can cause non-uniformity in the ADC transfer function (DNL, INL) and also non-
monotonicity (see [Markus, 2005]).

– In case this cannot be tolerated
• Add redundant bits to ADC backend (after combining all bits, final result can be truncated back) 
• Calibrate analog gain terms
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Digital Gain Calibration (2)

[ ]
qbresb

dacinres

VD

VVGV

ε+=
−⋅=
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Digital Gain Calibration (3)

• Can minimize impact of quantization error using

– Averaging (thermal noise dither)

– Extra backend resolution

Step1: [ ]
[ ] )2(

qbin
)2(

b

)1(
qbin

)1(
b

25.0VGD

25.0VGD

ε

ε

+−⋅=

++⋅=

Step2:

)2(
qb

)1(
qb

)2(
b

)1(
b G5.0DD εε −+⋅=−
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DAC Calibration

  ADC DAC

-

Vres
Vin

G1  G

dac(D)

  Backend

Db

Logic

Force

   1/Gd

D

Dout
corr(D)

REG

• Essentially same concept as gain calibration
– Step through DAC codes and use backend to measure errors

• Store coefficients for each DAC transition in a look-up table
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Recursive Stage Calibration

• First few stages have most stringent accuracy requirements

– Errors of later stages are attenuated by aggregate gain

• Commonly used algorithm [Karanicolas 1993] 

– Take ADC offline

– Measure least significant stage that needs calibration first

– Move to next significant stage and continue toward stage 1
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Calibration Hardware Example

[Chuang 2002]
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Alternative Schemes

• Other foreground calibration schemes

– Calibrate ADC starting from first stage  [Singer 2000] 

– Connect stages in a circular loop [Soenen 1995]

• Background calibration

– See e.g. [Ming 2001]

– Makes sense primarily when calibration parameters are 
expected to drift

• Capacitor ratios do not drift!

• Background calibration is justifiable e.g. when drift in OTA 
open-loop gain is an issue
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Combining the Bits (1)

• Example1: Three 2-bit stages, no redundancy

321out D
16

1
D

4

1
DD ++=
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Combining the Bits (2)

• Only bit shifts
• No arithmetic circuits needed

D1 XX    
D2 XX
D3 XX
------------
Dout DDDDDD
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Combining the Bits (3)

Stage 2Vin   Stage 3Stage 1

Dout[5:0]

B1=3
R1=2

B2=3
R2=2

B3=2

“8 Wires“

“6 Wires“

???

• Example2: Three 2-bit stages, one bit redundancy in stages 1 
and 2 (6-bit aggregate ADC resolution)
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Combining the Bits (4)

• Bits overlap
• Need adders (Still, no 

good reason for calling 
this "digital correction"...)

D1 XXX
D2 XXX
D3 XX
------------
Dout DDDDDD

321 16

1

4

1
DDDDout ++=
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Combining the Bits (5)

• For fractional weights (e.g. radix <2), there is no need to 
implement complex multipliers

• Can still use simple bit shifts; push actual multiplication into low-
resolution output

– E.g. a 1x10 bit multiplication needs only one adder…

• See e.g. [Karanicolas 1993]
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Outline

• Background
– History and state-of the art performance
– General idea of multi-step A/D conversion

• Pipeline ADC basics
– Ideal block diagram and operation, impact of block 

nonidealities

• Ways to deal with nonidealities
– Redundancy, calibration

• CMOS implementation details
– Stage scaling, MDAC design

• Architectural options
– OTA sharing, SHA-less front-end 

• Research topics
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Stage Implementation

Flash ADC "MDAC"

Switched-
Capacitor 

Circuit
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Generic Circuit
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Generation of Non-Overlapping Clocks

See e.g. [Abo 1999]

OK to make
tnov, tlag~100…200ps in 

today's technology
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Endless List of Design Parameters

• Stage resolution, stage scaling factor

• Stage redundancy

• Thermal noise/quantization noise ratio

• OTA architecture
– OTA sharing? 

• Switch topologies

• Comparator architecture

• Front-end SHA vs. SHA-less design

• Calibration approach (if needed)

• Time interleaving?

• Technology and technology options (e.g. capacitors)

A very complex optimization problem!
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Thermal Noise Considerations

• Total input referred noise

– Thermal noise + quantization noise

– Costly to make thermal noise smaller than quantization noise

• Example: VFS=1V, 10-bit ADC

– Nquant=LSB2/12=(1V/210)2/12=(280μVrms)2

– Design for total input referred thermal noise ~280μVrms or 
larger, if SNR target allows

• Total input referred thermal noise is the sum of noise in all 
stages

– How should we distribute the total thermal noise budget 
among the stages?

– Let's look at an example…
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Stage Scaling (1)

• Example: Pipeline using 1-bit (effective) stages (G=2)

• Total input referred noise power

⎥
⎦

⎤
⎢
⎣

⎡
+++∝ ...

16

1

4

11

321 CCC
kTNtot
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Stage Scaling (2)

C1/2

C1

Gm

C2/2

C2

Gm

C3/2

C3

GmVin

• If we make all caps the same size, backend stages contribute 
very little noise

• Wasteful, because Power ~ Gm ~ C

⎥
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⎢
⎣

⎡
+++∝ ...
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4

11

321 CCC
kTNtot
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Stage Scaling (3)

• How about scaling caps down by 22=4x per stage?

– Same amount of noise from every stage

– All stages contribute significant noise

– Noise from first few stages must be reduced

– Power ~ Gm ~ C goes up!

C1/2

C1

Gm

C2/2

C2

Gm

C3/2

C3

GmVin

⎥
⎦

⎤
⎢
⎣

⎡
+++∝ ...

16

1

4

11

321 CCC
kTNtot
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Stage Scaling (4)

• Optimum capacitior scaling lies approximately midway between 
these two extremes

[Cline 1996]
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Shallow Optimum

[Chiu 2004]

Capacitor scaling factor = 2Rx x=1 ⇒ scaling exactly by stage gain
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Practical Approach to Stage Scaling

• Start by assuming caps are scaled precisely by stage gain

– E.g. for 1-bit effective stages:

C/2

C

Gm

C/4

C/2

Gm

C/8

C/4

GmVin

• Refine using first pass circuit information & Excel spreadsheet

– Use estimates of OTA power, parasitics, minimum feasible 
sampling capacitance etc.

• Or, buy a circuit optimization tool…

EE 315 Lecture 13B. Murmann 14

Stage Scaling Examples (1)

[Cline 1996]
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Stage Scaling Examples (2)

[Ishii 2005]
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How Many Bits Per Stage?

• Low per-stage resolution (e.g. 1-bit effective)

– Need many stages

+ OTAs have small closed loop gain, large feedback factor
• High speed

• High per-stage resolution (e.g. 3-bit effective)

+ Fewer stages

– OTAs can be power hungry, especially at high speed

– Significant loading from flash-ADC

• Qualitative conclusion

– Use low per-stage resolution for very high speed designs

– Try higher resolution stages when power efficiency is most 
important constraint
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Power Tradeoff is Fairly Flat!

η = parasitic cap at output/total 
sampling cap in each stage
(junctions, wires, switches, …)

[Chiu 2004]

• ADC power varies by only ~2x across different stage resolutions!
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Examples

• Low power is possible for a wide range of architectures!

2242604.713.3Power [mW]

0.17

80

~56

1-1-1-1-1-1-1-3

10

90nm

[Yoshioka, 2007]

0.16

30

~54

2-2-2-4

10

90nm

[Jeon, 2007]

0.13um0.18umTechnology

2.243.25mW/MS/s

10080Speed [MS/s]

~64~65SNDR [dB]

3-3-2-2-41-1-1-1-1-1-1-1-1-1-2Bits/Stage

1412Bits

[Bogner 2006][Loloee 2002]Reference
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Re-Cap

• Choosing the "optimum" per-stage resolution and stage scaling 
scheme is a non-trivial task

– But – optima are shallow!

• Quality of transistor level design and optimization is at least as 
important (if not more important than) architectural 
optimization…

• Next, look at circuit design details

– Assume we're trying to build a 10-bit pipeline 
• Recent technology, feature size ~0.18μm or smaller

• Moderate to high-speed ~100MS/s

• 1-bit effective/stage, using "1.5-bit" stage topology

• Dedicated front-end SHA

EE 315 Lecture 13B. Murmann 20

1.5-Bit Stage Implementation

• Cf is used as sampling cap during acquisition phase, as 
feedback cap in redistribution phase
– Helps improve feedback factor (max. 1/3 → max. 1/2)

[Abo 1999] ([Lewis 1992]) 
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Residue Plot

[Abo 1999]
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Stage 1 Matching Requirements

C

C

C

C

f

s Δ
+≅∝ 1

• Error in residue transition must be accurate to within a fraction of 
9-bit backend LSB
– Typically want ΔC/C ~0.1% or better  
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Capacitor Matching

• 0.1% "easily" achievable in current technologies

– Even with metal sandwich caps, see e.g. [Verma 2006]
• Beware of metal density related issues, "copper dishing"

– For MIMCap matching data see e.g. [Diaz 2003]

• What if we needed much higher resolution than 10 bits?

– Digital calibration

– Multi-bit first stage
• Each extra bit resolved in the first stage alleviates precision 

requirements on residue transition by 2x

• For fixed capacitor matching, can show that each (effective) bit
moved into the first stage

– Improves DNL by 2x

– Improves INL  by sqrt(2)x

• Multi-bit examples: [Singer 1996] [Kelly 2001] [Lee 2007]  
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Typical Reference Generator

[Brooks 1994]

External decoupling caps provide dynamic currents
⇒ Low power reference buffer
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Comparators

• Can tolerate large offsets and large noise with appropriate 
redundancy

• Consume negligible power in a good design

– 50-100μW or less per comparator

• Lots of implementation options

– Resistive/capacitive reference generation

– Different pre-amp/latch topologies

– …
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Comparator Examples

[Chiu 2004]

[Mehr 2000]

Vin
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OTA Design Considerations

• Static amplifier error = 1/(DC Loop Gain)
– E.g. for 0.1% accuracy in first stage of 10-bit ADC, need loop 

gain > 60dB

• Dynamic settling error
– Typically want to settle outputs to ~1/8 LSB accuracy within 

1/2 clock cycle

• Thermal noise
– Size capacitors to satisfy kT/C noise requirement

• Start by picking an OTA topology that will deliver sufficient gain
– Or think about ways to compensate finite gain error…

• General references on OTA design
– [Boser 2005], [Murmann 2007]
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Two-Stage Folded Cascode OTA

• Works down to VDD=1V with reasonable output swing

• Gain ~ (gmro)3 ~ 103 = 60dB

• Use gain boosting to achieve larger gain

[Ishii 2005]

1V

~0.5V

(1Vpp,diff)
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How Fast Can We Go? (1)

• Non-dominant pole in two-stage amplifier hard to move past fT/5

• For 73 degrees phase margin (optimum for fast settling), loop 
crossover frequency is 1/3 of non-dominant pole frequency

• Settling linearly to 0.1% precision takes 7 loop time constants;
typically budget ~10 time constants

• Ideally, we'd have 1/2 clock cycle to settle linearly, but there is 
some time needed for slewing and non-overlap clock timing

– Assume 60% of half cycle is available for linear settling

• In summary

80

f
6.05.0

10

1
2

3

1

5

f
f TT

max,CLK =⋅⋅⋅= π
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How Fast Can We Go? (2)

• Sampling speeds of 200-300MHz are "easily" achievable in 
today's technologies
– fT is no longer a showstopper
– Speed ultimately constrained by power, power efficiency 

and/or clock jitter

1.125GHz (?)90GHz90nm

375 MHz30GHz0.18um

125 MHz10GHz0.35um

fCLK,max = fT/80
NMOS fT

(at moderate VGS-Vt ~150mV)
Technology
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Switches

• Make switch RC ~ 10 times 
faster than OTA

– Avoids speed degradation

– Minimizes switch noise 
contribution

• See e.g. [Schreier 2005]

– Avoids stability issues due to 
poles in feedback network

• Three choices for switches

– Single N or P device

– Transmission gate

– Bootstrapped NMOS
• For high swing nodes that 

require constant Ron

[Ishii 2005]

EE 315 Lecture 13B. Murmann 32

Front-End SHA

[Ishii 2005]

Minimize 
Jitter!

Need constant RON here to 
minimize signal dependent 

charge injection from S1N, S1P

S1P

S1N

229



EE 315 Lecture 13B. Murmann 33

Total Integrated OTA Noise (1)

Ltot
2

c
1

2
od C

kT
)1N(2

C

kT
N

1
2V +⋅+⋅⋅= γγ
β

1gssf

f

CCC

C

++
=β

2
g

g
1N

4...2
g

gg
1N

51m

61m
2

1m

31m11m
1

≅+=

≅
+

+=

( ) parasiticfLLtot CC1CC +−+= β

Stage 1 Stage 2

Cs

Cf

Cc

ignore in first 
cut design
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Total Integrated OTA Noise (2)

• Assuming γ=1, N1=N2=2

Ltotc

2
od C

kT
6

C

kT1
4V +⋅=
β

• OTA noise partitioning problem
– How should we split noise between stage1 and stage2 

terms?

• In this design example we'll use a 2/3, 1/3 split
– This is yet another design/optimization parameter

• With this assumption, we have

Ltot

2
od C

kT
18V =

β3

C
C Ltot

c =
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Stage 1 Noise 

3

1

CC

2/C

1gs1s

1s ≅
+

=β

Cs1=C1P
+C2P

Cs2

2

C

3

1
1CC 1s

2sLtot ⎟
⎠
⎞

⎜
⎝
⎛ −+=

3/CC

kT
18V

1s2s

2
1,od +
=

3/CC

kT

2

18
V

1s2s
2

2
1,id +
=
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SHA Noise 

2

1

CC

C

1gs0s

0s ≅
+

=β

Cs0

Cs1

2

C

2

1
1CC 0s

1sLtot ⎟
⎠
⎞

⎜
⎝
⎛ −+=

1s0s0s1s

2
0,id

2
0,od C

kT
16

C

kT

4/CC

kT
18VV ≅+

+
==

From sample phase (φ1)

Design choice: Cs0 = Cs1
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Noise Budgeting

• Total input referred noise budget, assuming VFS,diff=1V

– Nthermal = Nquant=LSB2/12=(1V/210)2/12=(280μVrms)2

• Reasonable "first cut" partitioning of input referred noise

– SHA → 1/2

– Stage 1 → 1/4

– All remaining stages → 1/4

( ) pF38.0CVrms280
4

1

3/CC

kT

2

9
V 2s

2

1s2s

2
1,id =⇒=

+
= μ

( ) pF66.1CVrms280
2

1

C

kT
16V 1s

2

1s

2
0,id =⇒== μ
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Capacitor Sizes

• Now refine these numbers using simulation and Excel spreadsheet

– Iterate over assumptions/design choices to optimize design

42.fF (minimum)Cs10

42.fF (minimum)Cs5

85fFCs4

190fFCs3

0.38pFCs2

1.66pFCs1

……

1.66pFCs0

/2

/2

/2
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Reality Check

[Honda 2007]

• Not too far off from a practical design…
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Kawahito's Design Charts (1)

(using single-stage OTA model)

(1-bit effective in each stage)

[Kawahito 2006]
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Kawahito's Design Charts (2)

[Kawahito 2006]

• Consider time-interleaving at high fs

• In theory, plenty of room for power
improvement…
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Amplifier Sharing (1)

• Limited power savings 
because amplifiers have 
different specs

[Min 2003]
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Amplifier Sharing (2)

• Sharing of amplifiers is most efficiently done in a pair of 
converters that process I/Q signals

[Kurose 2006]
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SHA-Less Architectures (1)

• Motivation

– SHA can burn up to 1/3 of total ADC power

• Removing front-end SHA creates acquisition timing mismatch 
issue between first stage MDAC & Flash

Sampler 
(MDAC)

[Chiu 2004]
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SHA-Less Architectures (2)

• Strategies

– Use first stage with large redundancy; this can help absorb 
fairly large skew errors

– Try to match sampling sub-ADC/MDAC networks
• Bandwidth and clock timing

[Mehr 2000]
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Research (1)

~8400 gates

[Murmann 2003]

Open-loop amplification!
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Research (2)

• Conventional designs settle 
to within small % error of 
final value (ts/τ~10)

• Idea

– Extend digital post-
processing to correct for 
incomplete settling error

– E.g. settle ~4x faster, or 
reduce power by ~4x

[Iroaga, 2007]
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Research (3)

• Comparator-based switched-capacitor circuits

• Output slews to final value

– Most efficient way to transfer charge

[Fiorenza 2006]
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Overview

• Bit-at-a-time ADCs

– Cyclic ADCs

– Successive approximation ADCs

• Time Interleaving

– Use several Nyquist ADCs (any architecture) in parallel to 
increase conversion rate
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Cyclic ADC

• Essentially same as pipeline, but a single stage is used in a 
cyclic fashion for all operations

• Need many clock cycles per conversion
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Implementation Example

[Erdogan et al. JSSC 12/99]
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Discussion

• Advantages

– Area efficient
• Typically only one or two switched capacitor stages plus 

comparator

– Easy to calibrate
• Need to measure only one coefficient (capacitor ratio)

• Disadvantages

– Slow
• Need many clock cycles for a single conversion

– Sub-optimal power efficiency
• Cannot scale stages like in a pipeline ADC

• Noise and accuracy requirements decrease from MSB to LSB 
cycle, but invested circuit energy per cycle is (usually) constant
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Successive Approximation Register ADC

• Binary search over DAC output

• High accuracy achievable (16+ Bits)

– Relies on highly accurate comparator 

• Moderate speed (1+ MHz)
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High Performance Example
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Low Power Example

M.D. Scott, B.E. Boser, K.S.J. Pister, "An ultralow-energy ADC for Smart 
Dust," IEEE J. Solid-State Circuits, pp. 1123 -1129, July 2003.
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Implementation

• See e.g. [McCreary, JSSC 12/1975]

CCC B1A1 == C2C2 = C4C3 = C2C 1B
B

−=

B

B
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Sampling Phase (5-bit Example)

• Total charge at node Vx after opening Sx

totalinin CVC32VQ ⋅−=⋅−=
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Bit5 Test (MSB)

• Vx<0 ⇒ Vin>0.5Vref ⇒ Bit5=1

• Vx>0 ⇒ Vin<0.5Vref ⇒ Bit5=0

( ) ( )pxrefxtotalin CC16VC16VVCVQ +⋅+⋅−=⋅−=

ptotal

total
inrefx CC

C
VV

2

1
V

+
⋅⎟
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⎜
⎝
⎛ −=∴
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Bit4 Test (Assuming bit5=0)

• Vx<0 ⇒ Vin>0.25Vref ⇒ Bit4=1

• Vx>0 ⇒ Vin<0.25Vref ⇒ Bit4=0

( ) ( )pxrefxtotalin CC24VC8VVCVQ +⋅+⋅−=⋅−=

ptotal

total
inrefx CC
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Limitations

• Conversion rate typically limited by finite bandwidth of RC 
network during sampling and bit-tests

• For high resolution, the binary weighted capacitor array can 
become quite large

– E.g. 16-bit resolution, Ctotal~100pF for reasonable kT/C noise 
contribution

• If matching is an issue, an even larger value may be needed

– E.g. if matching dictates Cmin=10fF, then 216Cmin=655pF

• Commonly used techniques

– Implement "two-stage" or "multi-stage" capacitor network to 
reduce array size [Yee, JSSC 8/79]

– Calibrate capacitor array to obtain precision beyond raw 
technology matching [Lee, JSSC 12/84]
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Time Interleaved ADCs

• Idea: Run M ADCs in parallel to obtain an aggregate throughput 
rate of M·fs

• Catch: Each ADC still needs an acquisition bandwidth that is 
commensurate with maximum input frequency
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Example (1)

• Idea
– Interleave several "slow" SAR ADCs to get high throughput 

while maintaining low complexity good power efficiency

• Array consists of eight 6-bit ADCs, each running at 75 MS/s
– Aggregate throughput is 600MS/s, power=10mW in 90-nm 

CMOS technology

[Draxelmayr, ISSCC 2004]
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Example (2)

[Poulton, ISSCC 2003]
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Issues with Time Interleaving

• Offset mismatch
– Each channel will have a different offset
– Output will contain a periodic error sequence that manifest itself as 

spurs in the output spectrum

• Gain mismatch
– Channels may also have slightly different gain
– Results in amplitude modulation

• Phase skew
– Hard to guarantee precise phase relationship between individual 

channel clocks
– Results in phase modulation (similar to aperture uncertainty) 

• Solutions
– "Careful design"
– Analog or digital calibration

• See e.g. [Jamal, JSSC 12/2002]
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Impact of Offset Errors

• E.g. FS=1V, σOS=1mV ⇒ ENOB~9bits!

σOS/FS

[Gustavsson, p.262]
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Impact of Gain Errors

• E.g. σGain=0.1% ⇒ ENOB~10bits

σGain

[Gustavsson, p.266]
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Impact of Phase Skew

• Above chart is for M=4 channels

• E.g. fin=100MHz, phase skew=3ps ⇒ ENOB~9bits!

[Gustavsson, p.267]
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Recap

• Sampling theorem

max,sigs f2f >

• One good reason for sampling faster ("oversampling")

– Can use lower order anti-alias filter
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Anti-Alias Filtering
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Quantization Noise

• Recall from lecture 2 that the "noise" introduced by quantizer is 
evenly distributed across all frequencies

– Provided that quantization error sequence is "sufficiently 
random"

• Idea: Let's filter out the noise beyond f=fB!

fs/2

Ne(f)
Δ2/12

fB
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Digital Noise Filter (1)

• Total quantization noise at digital output is reduced proportional 
to "oversampling ratio" M=(fs/2)/fB

122/f
f 2

s

B Δ
⋅

12

2Δ
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Digital Noise Filter (2)

• Increasing M by 2x, means 3-dB reduction in quantization noise 
power, and thus 1/2 bit increase in resolution

– "1/2 bit per octave"

• Is this useful?

• Reality check

– Want 16-bit ADC, fB=1MHz

– Use oversampled 8-bit ADC with digital lowpass filter

– 8-bit increase in resolution necessitates oversampling by 16 
octaves

GHz131

2MHz12Mf2f 16
Bs

≥
⋅⋅=⋅⋅≥
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Noise Shaping

• Idea: "Somehow" build an ADC that has most of its quantization 
noise at high frequencies

• Key: Feedback
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Noise Shaping Using Feedback (1)
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Noise Shaping Using Feedback (2)

• Objective

– Want to make STF unity in the signal frequency band

– Want to make NTF "small" in the signal frequency band

• If the frequency band of interest is around DC (0…fB) we 
achieve this by making |A(z)| >>1 at low frequencies

– Means that NTF is <<1

– Mans that STF ≅ 1 
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Discrete Time Integrator

• "Infinite gain" at DC (ω=0, z=1)
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First Order Sigma-Delta Modulator

• Output is equal to delayed input plus filtered quantization noise
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NTF Frequency Domain Analysis

• The plot on slide 7 shows |He(f)|

– "First order noise Shaping" 

– Quantization noise is attenuated at low frequencies, 
amplified at high frequencies
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In-Band Quantization Noise (1)

• Question: If we had an ideal digital lowpass, what would be the 
achieved SQNR as a function of oversampling ratio?

• Can integrate shaped quantization noise spectrum up to fB
(shaded area on slide 7) and compare to full-scale signal 
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In-Band Quantization Noise (2)

• Assuming a full-scale sinusoidal signal, we have
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• Each 2x increase in M results in 8x SQNR improvement

– 9dB (1.5bits) per octave oversampling
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SQNR Improvement

85dB (~14 bits)1024

67dB (~11 bits) 256

31dB (~5 bits)16

SQNR improvementM

• Example revisited
– Want 16-bit ADC, fB=1MHz
– Use oversampled 8-bit ADC, first order noise shaping and 

(ideal) digital lowpass filter
• SQNR improvement compared to case without oversampling is 

-5.2dB+30log(M)

– 8-bit increase in resolution (48dB SQNR improvement) 
would necessitate M≅60

• Not all that bad!
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DAC Requirements

• DAC error is indistinguishable from signal

– Means that DAC must be precise to within target resolution

• For the previous example, this means that we need an 8-bit 
DAC whose output levels have 16-bit precision…

( ) ( ) ( ) ( ) ( )[ ] ( )
( )zA1

zA
zzX

zA1

1
zEzY DAC +

−+
+

= ε

258



EE 315 Lecture 15B. Murmann 17

Solutions

• Trimming or calibration
– Measure DAC levels during test or at power-up
– Apply correction values to each level using auxiliary DAC

• Dynamic Element Matching Algorithms
– Shuffle DAC unit elements to obtain fairly precise "average" 

output levels
– Two ways

• Data independent shuffling
• Data dependent shuffling

– Data dependent shuffling algorithms allow to push most of 
the DAC "noise" outside the signal band

– See e.g. [Carley, JSSC 4/1989], [Galton, TCAS II 10/1997], 
[Vleugels, JSSC 12/2001]

• Single bit quantizer

EE 315 Lecture 15B. Murmann 18

Single-Bit DAC

• A single bit DAC has only two output levels

• Even if these two levels are imprecise, the errors will only affect 
gain and offset of the DAC and modulator

– Tolerable in many applications
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Modulator with Single-Bit Quantizer (1)

• Model

• Expected SQNR (from slide 14 with B=1) 

[ ]dB)Mlog(304.3

M
2

9

M

1
312

22
1

P

P
SQNR 3

2

3

22

2

qnoise

sig

+−=

×=
⋅

⎟
⎠
⎞

⎜
⎝
⎛

=≅
ππΔ

Δ

• E.g. M=128 ⇒ SQNR=60dB

1-bit 
code
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Modulator with Single-Bit Quantizer (2)

• Not all that great in terms of achievable SQNR, but sufficient for 
some applications

– E.g. digital voltmeter
• See [van de Plassche, pp. 469]

[Schreier, p. 31]

• Implementation example
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Simulated Response

EE 315 Lecture 15B. Murmann 22

Spectrum

• Looks like there is some noise shaping, but SQNR=55dB is 
lower than the expected 60dB

[Schreier, p. 39]

f/fs
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Amplitude and Frequency Dependence

• Erratic dependence on amplitude and frequency

– Simple linear model fails to predict this behavior

• Issue: Quantization error sequence is not "sufficiently random",
as assumed in the beginning of this discussion (slide 4)

[Schreier, p. 40]

[M=256]
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Quantization Error in 1st Order Modulator

• A complicated, but deterministic function of the input
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Tones

• Since the quantization error is correlated with the input, the 
shaped quantization noise contains spurious tones, some of 
which lie in the signal band
– Spurs are visible on slide 22

• Linear model cannot predict these tones, but is still useful to 
gain insight into noise shaping process

• It is difficult to predict tonal behavior for arbitrary inputs
– Analytical results exist for DC and sine inputs, see e.g.

• R.M. Gray "Spectral analysis of quantization noise in a single-
loop sigma-delta modulator with DC input," IEEE Trans. 
Comm., pp. 588-599, June 1989.

• R.M. Gray et al., Quantization noise in single-loop sigma-delta 
modulation with sinusoidal inputs," IEEE Trans. Comm., pp. 
956-968, Sept 1989.

• Interesting to look at DC input as a worst case
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DC Input (1)

• E.g. x(n)=0
– Modulator generates an alternating sequence of 1s and 0s
– Single tone at fs/2; no low frequency component

• E.g. x(n)=0.001⋅Δ/2

– Compared to previous example, only one in 1000 outputs 
will change

– Output has period of 1000⋅T, and hence contains a low 
frequency, in-band component
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DC Input (2)

• For a DC input, the modulator output consists of discrete tones 
("idle tones") with power and frequency given by

s
DC

k f5.0
x

kf ⎟
⎠
⎞

⎜
⎝
⎛ +=
Δ

where k is an integer, and <r> represents the fractional part of r 
(r modulo 1)

• Strongest tones occur for small k, due to reciprocal dependence

• The plot on the following slide shows the total mean square 
error due to in-band idle tones as a function of DC input (M=16)

( ) 2
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k k

Tfsin
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MSE due to Idle Tones

X/Δ
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Idle Tone Considerations

• Idle tones are known to be a significant issue in audio applications

– The human ear can detect tones ~20dB below the 
thermal/quantization noise floor

• If idle tones are an issue, there are several options for mitigating their 
impact

– Larger oversampling ratio

– Multi-bit quantizer

– Dither
• Superimpose a pseudorandom signal at the quantizer input to "whiten" 

quantization noise
– See e.g. Chapter 3 of Delta-Sigma Data Converters by Norsworthy, Schreier & Temes.

– Overdesign by making quantization noise much smaller than 
electronic noise from integrators

• Noisy integrator(s) help randomize quantization error sequence

– Higher order modulators
• Naturally produce "more random" quantization error sequences
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Higher Order Modulators

• Motivation: better SQNR for a given oversampling ratio, plus 
improved idle tone performance as a side benefit

• Commonly used architectures

– Single quantizer loop with higher order filtering
• Essentially a logical extension to the first order noise shaping

concept discussed previously

– Cascaded, multi-stage modulators
• Contain a separate quantizer in each stage
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Higher Order Noise Shaping

• Lth order noise transfer function

( )L1
E z1)z(H −−=
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In-Band Quantization Noise

• For an Lth order modulator, every doubling of M results in an 
increase in SQNR of 6L+3dB (L+0.5bits)
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SQNR with Single Bit Quantizer
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Building a Second-Order Modulator (1)

• Want
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• Won't work without additional degree(s) of freedom…

268



EE 315 Lecture 16B. Murmann 3

Building a Second-Order Modulator (2)
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Building a Second-Order Modulator (3)
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Building a Second-Order Modulator (4)
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Building a Second-Order Modulator (5)
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Boser-Wooley Modulator (1)

• Two delaying integrators
– Simplifies implementation

• Gain of second integrator scaled down to maximize useable 
swing at modulator input

[Boser & Wooley, JSSC 12/1988]

(Single-bit)

EE 315 Lecture 16B. Murmann 8

Boser-Wooley Modulator (2)
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Performance of 2nd Order Modulator

• Compared to first 
order modulator, 
SQNR is in "better" 
agreement with 
simple linear model

[Schreier, p.70]
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• Improved idle tone 
performance
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Single Quantizer Modulators with Order >2

• L0 (z) and L1(z) are usually implemented using shared hardware
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• Most general filter decomposition
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Single Loop with High Order Filter
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• Special case with L0=A and L1=-A 
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Stability

• Primarily determined by characteristics of He(z)

• First order modulator is stable (bounded integrator output) with
arbitrary inputs of less than Δ/2 in magnitude

• Second order modulator is known to be stable with arbitrary 
inputs of less than Δ/20 in magnitude

– For "reasonable", slow varying inputs of magnitude <0.8·Δ/2, 
integrator outputs are "likely" to stay within bounds

• To date, no exact stability criteria for higher order modulators
have been found

– Lee's criterion for single bit, high order modulators states 
that the modulator is "likely" to be stable if max[He(ω)]<1.5

• In practice, designers rely on a combination of stability analysis 
using the linear model (!) and simulations of the nonlinear model
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Typical Design Procedure

• "Cookbook design"

– See e.g Delta-Sigma Data Converters, by Norsworthy, 
Schreier & Temes, Sections 4.4 and 5.6

– Choose order based on desired SQNR and M

– Design NTF using filter approximations (e.g. Chebyshev)
• Make sure to obey Lee's criterion

– Determine loop-filter transfer function and evaluate 
performance and stability using simulations

– Determine implementation specific coefficients

– Scale coefficients to restrict integrator outputs to stay within
available range ("Dynamic range scaling")

• Delta-Sigma Toolbox for MATLAB (by Richard Schreier)

– http://www.mathworks.com/matlabcentral/fileexchange

– Look under "Controls" and find "Delsig" toolbox
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"Cookbook" NTF Design Example (1)

% design parameters

L=4; % order

M=64; % oversampling ratio

% stop-band attenuation; reduce if needed to make max(|He(w)|<1.5)

Rstop = 80;

[b,a] = cheby2(L, Rstop, 1/M, 'high');

% normalize to make He(z->inf)=1; needed for realizability

% makes first sample of impulse response of He equal to 1

% makes first sample of impulse response of A equal to 0

% (must have at least one delay around quantizer) 

b = b/b(1);

% check Lee's rule; want max(|He(w)|<1.5 )

NTF = filt(b, a, 1)

[mag] = bode(NTF, pi)
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"Cookbook" NTF Design Example (2)

Transfer function:

1 - 3.998 z^-1 + 5.995 z^-2 - 3.998 z^-3 + z^-4

------------------------------------------------------

1 - 3.247 z^-1 + 4.013 z^-2 - 2.231 z^-3 + 0.4699 z^-4

mag = 1.459
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"Cookbook" NTF Design Example (3)

% Loop filter transfer function

A = inv(NTF) - filt(1,1,1)

Transfer function:

0.7505 z^-1 - 1.982 z^-2 + 1.766 z^-3 - 0.5301 z^-4

---------------------------------------------------

1 - 3.998 z^-1 + 5.995 z^-2 - 3.998 z^-3 + z^-4

% Check realizability

a = impulse(A);

a(1)

ans = 0
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Possible Realization

• Can show (with a little algebra) that coefficients of A(z) map 
directly into values for a1…a4, g1 and g2 in above realization

[Schreier, p. 123]
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The Cost of Stability

• Higher out of band gain means higher attenuation in the signal 
band and hence better SQNR

– Unfortunately modulator becomes "less stable"

M
ax

. 
In

pu
t 

[Δ
/2

]

[Norsworthy, pp.156]

M=40, L=6
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Achievable SQNR

• Diminishing return for order greater 5-6

EE 315 Lecture 16B. Murmann 20

Commercial Example
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Cascaded Modulators

• Concept

– Cascade of two or more stable (low order) modulators

– Quantization error of each stage is quantized by the 
succeeding stages and subtracted in digital domain
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y DELAY

x y
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DIGITAL
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ΣΔ

ΣΔ

Digital
Out

Analog
In
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Second Order (1-1) Cascade

• Second order noise shaping using two first order loops!

Y(z) = z–1Y1(z) – (1 – z–1)Y2(z)

= z–2X(z) + z–1(1 – z–1)E1(z) – z–1(1 – z–1)E1(z) – (1 – z–1)2E2(z)

Y(z) = z–2X(z) – (1 – z–1)2E2(z)

Y1(z) = z–1X(z) + (1 – z–1)E1(z)

Y2(z) = z–1E1(z) + (1 – z–1)E2(z)
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Properties

• Order of overall noise shaping is equal to sum of modulator 
orders

• No stability issues

• Improved idle tone performance

– Input of second stage is "noise like"

– Remaining quantization error from second stage is very 
close to white noise

• Cancellation of first stage quantization noise depends on 
matching between analog and digital signal paths

– Hard to suppress first stage quantization error by more than 
40dB

– Mismatch will affect idle tone performance
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1-1-1 Cascaded Modulator (MASH)

1
z-1

1
z-1

1
z-1
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Mismatch Sensitivity
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2-1 Cascade
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Mismatch Sensitivity
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Circuit Level Considerations

• Electronic noise

• Finite OTA gain
– Integrator leak
– Dead zones
– Nonlinearity

• OTA dynamic settling error, nonlinearity due to slewing

• Capacitor voltage coefficients

• Comparator hysteresis
– Usually not a problem; simulations show that up to a few % 

hysteresis can be tolerated

• Unwanted mixing effects
– E.g. if Vref contains fs/2, out of band noise will be mixed down 

into signal band
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Electronic Noise

• Noise from 1st integrator is added directly to the input
– Digital filter will reduce this noise by oversampling ratio

• Noise from 2nd integrator is first-order noise shaped!
– Digital filter will remove most of this noise 

• Especially for high oversampling ratios, only the first one or two integrators 
add significant noise
– Qualitatively, this also holds for other imperfections.

E.g. 2nd Order Switched Capacitor Modulator

EE 315 Lecture 16B. Murmann 30

Example – Noise from Second Integrator

Can show:
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Integrator Analysis (1)

CI·Vo(n-1/2) = CI·Vo(n-1) + Cs·Vi(n-1)0n-1/2

……n+1/2

CI·Vo(n) = CI·Vo(n-1) + Cs·Vi(n-1)Cs·Vi(n)n

CI·Vo(n-1)Cs·Vi(n-1)n-1

QIQst/Ts
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Integrator Analysis (1)

• Assuming that Vo is sampled during φ1, we have
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• Unfortunately, this ideal expression holds only for infinite 
amplifier gain

– Let's look at impact of finite gain 
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Finite Gain (1)

CI·Vo(n-1/2)·[1+1/A] = CI·Vo(n-1)·[1+1/A] + 
Cs·Vi(n-1) - Cs·Vo(n-1/2)/A

Cs·Vo(n-1/2)/An-1/2

……n+1/2

CI·Vo(n)·[1+1/A] = CI·Vo(n-1)·[1+1/A] +
Cs·Vi(n-1) - Cs·Vo(n)/A

Cs·Vi(n)n

CI·Vo(n-1)·[1+1/A]Cs·Vi(n-1)n-1

QIQst/Ts

A
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Finite Gain (2)

• Again, assuming that Vo is sampled during φ1, we have
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• Finite gain results in "leaky integrator"

– Some fraction of previous output is lost in new cycle
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Frequency Domain View

• Limited gain at low frequencies (ω→0, z →1)

[ ] A
g

11

g
)z(HH

1z0 ∝=
−−

== = αα

• But noise shaping relies on high integrator gain at low frequencies…
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Required DC Gain

• Good practice to make OTA gain at least a few times larger than 
oversampling ratio

[Boser & Wooley, JSSC 12/1988]
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Settling

[Williams & Wooley, JSSC 3/1994]

No Slewing, 
incomplete settling

Slewing, amplifier 
settles
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State-of-the-art CT Delta-Sigma Modulator

[Mitteregger, ISSCC 2006]

• 4-stage amplifier with 
feedforward compensation
– Impractical for SC circuits
– Great for CT sigma delta 

modulators
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Multi-Mode Modulator

[Ouzounov, ISSCC 2007]

• Delta-Sigma ADCs are 
more amenable to BW 
and DR reconfiguration

– Very hard to 
reconfigure pipelined 
ADCs

• Great for flexible, multi-
standard wireless 
receivers
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Lecture 17
Decimation Filters

Oversampling D/A Conversion

Boris Murmann
Stanford University

murmann@stanford.edu

Copyright © 2008 by Boris Murmann

EE 315 Lecture 17B. Murmann 2

Decimation Filters

• References
– J. Candy, "Decimation for Sigma-Delta Modulation," IEEE 

Trans. Communications, pp. 72-76, Jan. 1986.
– Chapters 1 and 13 of Delta-Sigma Data Converters, by 

Norsworthy, Schreier, Temes.
– B.P. Brandt and B.A. Wooley, "A low-power, area-efficient 

digital filter for decimation and interpolation," IEEE J. Solid-
State Circuits, pp. 679-687, June 1994.

– E. Hogenauer, "An economical class of digital filters for 
decimation and interpolation," IEEE Trans. Acoustics, 
Speech and Signal Processing, pp. 155-162, Apr 1981.

• Objectives
– Remove out-of band quantization noise
– Re-sample at lower frequency

• Ideally at Nyquist rate
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Example

• Filter must attenuate spectral components around ± N·fN,

– Otherwise they will alias onto signal after re-sampling

Decimation Filter  (M = 256)

ΣΔ Modulator 

(2nd-Order)

Analog 
Input

Digital 
Output 
(16 Bits)

fN

44.1 
kHz

11.3 
MHz

1-Bit

11.3 
MHz

fS

FrequencyFrequencyFrequency

Signal

Noise

Quantization 
Noise

EE 315 Lecture 17B. Murmann 4

Filter Requirements

• Pass band 0…20kHz, transition band 20…24.1kHz (Δf=4.1kHz), 
stop band 24.1kHz…5.65MHz

• A digital FIR filter that meets these requirements would require
more than fs/Δf = 11.3MHz/4.1kHz ≅ 2800 coefficients

– Impractical!
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Multi-Step Decimation

• Key idea: Don’t try to decimate down to fN in one step
– Perform a gradual reduction of sampling rate + some filtering
– E.g. Two-step decimation 

• Example: M1=64, fs/M1=176.4kHz

EE 315 Lecture 17B. Murmann 6

Sinc Filter (1)

• A popular, low complexity choice for stage 1 is the so-called 
sinc-filter 

• From a time domain perspective, this filter simply computes the 
average of several samples

( )∑
−

=
−=

1N

0i

inx
N

1
)n(y

• Frequency domain

1

N

z1

z1

N

1
)z(H −

−

−
−

=
( )1N

f

f
j

s

s se

f
f

f
f

Nsin

N

1
)(H

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
π

π

π
ω

• Zeros at multiples of fs/N

– Make N=M1 to attenuate alias components! 
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Cascade of K Sinc Filters

• Higher order means better rejection
– But also more in-band droop

• Can show that for Lth order noise shaping, an (L+1)th order sinc 
filter is the best choice 

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency

0 2fs1
M1

fs1
M1

fNfB 3fs1
M1

K=1

K=2

K=3
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Sinc Filter Performance

• Only about 0.14 dB increase in baseband noise for decimation 
to an intermediate oversampling ratio of 4

• If droop is undesired, it can be corrected downstream, using a 
separate post-emphasis filter

Noise penalty relative to "brick wall" filter Droop

[Norsworthy, p.30]

[Norsworthy, p.31]
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Sinc Filter Performance (2)

• In addition to suppressing quantization noise, the filter must 
attenuate out-of-band signals present at the modulator input
– Worst case freqeuncy is fs/M1-fB
– E.g. 50dB for sinc3, and intermediate oversampling of 4x
– Any additional desired rejection must come from analog filter 

at modulator input 

[Norsworthy, p.31]
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Sinc Filter Implementation

X Y1 – z-1

Numerator Section:

X Y
1 – z-1

Denominator Section:

1

X Y+

Delay

X Y+

Delay
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Complete Filter Implementation

THIRD- 
ORDER 

SINC 
FILTER 

FIRST 
HALFBAND 

FILTER 
(R=18)

SECOND 
HALFBAND 

FILTER 
(R=110)

DROOP 
CORRECTION 

FILTER 
(R=8)176.4 

kHz
88.2 
kHz

44.1 
kHz

OUT
44.1 
kHz

IN
11.3 
MHz

M   = 22M   = 641 M   = 23

1 20 22 22 16

Third-Order 
Sinc Filter

200180160140120100806040200

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

FREQUENCY (kHz)

First 
Halfband 

Filter

Second 
Halfband 

Filter

Passband Ripple 

= ± 0.01 dB

[Brandt & Wooley, JSSC 6/1994] 
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Droop Correction

2220181614121086420

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FREQUENCY (kHz)

First Halfband 
Filter

Second 
Halfband 

Filter

Droop-Correction 
Filter

Third-Order 
Sinc Filter

293



EE 315 Lecture 17B. Murmann 13

Implementation

• 43 multiplications and 
84 additions per output 
sample

• Can use serial 
arithmetic to minimize 
hardware area

– Since output rate is 
usually fairly low

2020 2020 2020

Dout

Data  RAM

22-Bit Arithmetic Unit (AU)

Coefficient/ 
Control  ROM

7

7

CLK (11.3 MHz)

Addr

Addr

Ctrl.13

Din

Filter 
Output 

(128 x 22)

22

(256 x 22)
R/W

7

8

22

ΣΔ Modulator 
Output

PROCESSOR

SINC FILTER 
INTEGRATORS

Virtual Addr. 
Logic

Processor 
Input
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D/A Conversion Revisited

Lowpass
Filter

N-Bit Digital lnput Word x(kT) 

Digital-to-Analog Interface Analog

b
1

b
2

b
3

b
N

• • •

Output
y(t)

y
H

(t)

Time

y(t)

Time

T
S

Zero-Order
Hold

x*(t) y
H

(t)
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Frequency Spectra

Spectral Images

fS 2fSfS/20 3fS

fS 2fSfS/20 3fS

Frequency

fS 2fSfS/20 3fS

|YH(f)| 

|PZ(f)| 

|X*(f)| 
Baseband Signal

Magnitude
Spectral Image Bands (Dirac Reconstruction)
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Oversampling

• Oversampling greatly reduces reconstruction filter requirements

• How to create oversampled DAC input from a Nyquist rate signal?

|X(f)| 

Magnitude

Frequency

|X
M

(f)| 

M f
N

(M-1) f
N

(M-2) f
N

2 f
N

f
N

f
S
 = M f

N

…

Spectral Images

Analog Filter

Analog Filter

f
B

f
B

(a)

(b)

Spectral Image Bands
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Interpolation (1)

• Can increase the sampling rate of a discrete time signal by a 
factor of M, by inserting M-1 zero-valued samples between the 
actual Nyquist rate samples ("zero stuffing")

– Causes an M-fold periodic repetition of the baseband 
spectrum

Nyquist-rate

After 

Input

Zero

…

Spectral Images

Insertion …

f
S
=M f

N
(M-1) f

N
(M-2) f

N
2 f

N
f

N

M f
N

(M-1) f
N

(M-2) f
N

2 f
N

f
S
=f

N
f

B

 

f
B

Spectral Image Bands
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Interpolation (2)

Digital

Interpolator

Lowpass

Output

Filter

M 

f
B

f
B

f
S
=M f

N

f
S
=M f

N

• Why is this a good idea?

• Can remove images and get wide transition band to play with

– Simple reconstruction filter

– Possibility of noise shaping
• Build a high resolution DAC using a low resolution D/A interface
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Example

• Digital noise shaper is essentially a digital sigma-delta loop

– Shapes "truncation noise" that results from truncating 16-bit 
word to a 1-bit output

Digital
Input f

N

16

M f
N

M f
N

Digital

Interpolator

Digital

Noise

Shaper

Reconstruction

Filter

Analog

ANALOGDIGITAL

1-bit D/A Interface

Analog
Output

16 1
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Spectra

Digital

Interpolator

Noise 

Analog

Input

Output

Shaper

Output

M f
N

(M-1) f
N

(M-2) f
N

2 f
N

f
N

M f
N

…

M f
N

Output

Spectral Images

Quantization Noise

Baseband Signal

Frequency

Truncation Noise
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Example

• Clipper prevents second integrator from overflowing

– Digital "wrap around" would cause large errors

Y(z)  = z – 2  X(z) + (1 – z –1 ) 2  E(z)

Σ z–1X(z) Y(z)
+

Σ

Σ

2

Σ z–1

+ +

116

E(z)

–

–

+

+

+

Clipper

18 19

18

To 1-bit D/A Interface

[Su &Wooley, JSSC 12/94]
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Semi-Digital Reconstruction (1)

• Attractive alternative to fully analog reconstruction filter

– Build FIR filter with weighted analog outputs

z– 1 z– 1

a
1

Σ

a
2

a
n

Digital
Input

n -Bit Shift Register

Analog Output, A
OUT

H
FIR

 (z) = a
1
 z–1  + a

2
 z–2  + ... + a

n
 z–n

DIGITAL

ANALOG

1
D

IN

. . .

z– 1 . . .

[Su &Wooley, JSSC 12/94]
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Semi-Digital Reconstruction (2)

• Linear if H(z) is independent of DIN(z)

+
Analog
Output

Digital
Input 128-Bit Shift Register

a
1

Current-to-Voltage
Conversion

Weighted
Current
Sources

DIGITAL

ANALOG

I
out

I
out

a
2

a
128

. . .

AOUT z( ) a1z 1– a2z 2– a3z 3– … anz n –
+ + + + DIN z( )=

H (z)
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Measurement Results

1k 10k 100k 1M
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Lecture 18
ADC Figures of Merit

Limits on ADC Power Dissipation

Boris Murmann
Stanford University

murmann@stanford.edu

Copyright © 2008 by Boris Murmann
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ADC Figures of Merit (1)

• Objective

– Want to compare performance of different ADCs

• Can use FOM to combine several performance metrics into 
one single number

• What are reasonable FOMs for ADCs?

• How can we use and interpret them?

• Trends and Limits?

300



EE 315 Lecture 18B. Murmann 3

ADC Figures of Merit (2)

• This FOM suggests that adding a bit to an ADC is just as hard 
as doubling its bandwidth

• Is this a good assumption? 

ENOB
sfFOM 21 ⋅=

[R. H. Walden, "Analog-to-digital 
converter survey and analysis," IEEE 
Journal on Selected Areas in 
Communications, April 1999]
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Survey Data

[Walden, "Analog-to-digital converter survey and analysis," IEEE J. Selected Areas Comm., April 1999]

1bit/Octave
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ADC Figures of Merit (3)

• Sometimes inverse of this metric is used

• In typical circuits power ~ speed

– FOM2 captures this tradeoff correctly

• How about power vs. ENOB?

– One additional bit = 2x in power?

Power

f
FOM

ENOB
s 2

2

⋅
=

[R. H. Walden, "Analog-to-digital 
converter survey and analysis," IEEE 
Journal on Selected Areas in 
Communications, April 1999]
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ADC Figures of Merit (4)

• In a circuit that is limited by thermal noise, each additional bit in 
resolution means...

– 6dB SNR, 4x less noise power, 4x bigger C

– Power ~ Gm ~ C increases 4x

• Even worse: Flash ADC

– Extra bit means 2x number of comparators

– Each of them needs double precision

– Transistor area 4x, Current 4x to maintain current density

– Net result: Power increases 8x
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ADC Figures of Merit (5)

• FOM2 in inappropriate for comparing ADCs that are limited by 
matching or thermal noise

– Still the most widely used FOM in publications...

• "Tends to work" because not all power in an ADC is noise 
limited

– E.g. Digital power, biasing circuits, etc.

• To better capture the case of noise limited circuits, one could 
use 22ENOB in the numerator of FOM2...

– But how about other (non-noise limited) circuits?  

• My suggestion

– Avoid using a FOM that assumes a fixed relationship 
between ENOB and power 
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ADC Figures of Merit (6)

• Compare only power of ADCs with approximately same SNR or 
SNDR (ENOB)

• Useful numbers (~state-of-the-art):
– 10b (~9 ENOB) ADCs: 0.25...1 mW/MHz

– 12b (~11 ENOB) ADCs: 2...6 mW/MHz

 Sample"Nyquist perEnergy "
Bandwidth Conversion2

Power
FOM3 =

⋅
=
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FOM3 (ISSCC & VLSI 1997-2008)
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Power Dissipation in Sub-100nm CMOS
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Power Dissipation Trend

1.87x power increase

per 6dB

2x reduction every

2.1 years (!)

20
40

60
80

100
120

1998
2000
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2004

2006
2008
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6

SNDR [dB]Year

lo
g

(P
/f

s [p
J]

)
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Fundamental Limits

• Fundamental power limit for a class-B amplifier driving a single 
capacitor [Vittoz, ISCAS 1990]

2
sigsig CVf8P ⋅⋅=

C

Tk
V B2

n =

sigB fSNRTk8P ⋅⋅=∴

2
n

2
sig

V

V5.0
SNR

×
=

• Class-A power limit is π times higher 
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Switched Capacitor Circuits

S/H Class-A

C

1 2

3

2

1

3

Slewing

Linear
Settling

Vsig

Vsig

Ts/2
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Case 1: 100% Slewing

biassig IV2P ⋅⋅=

sigB fSNRTk16P ⋅⋅=∴

C
Tk

V5.0
SNR

B

2
sig×

=

sigsig
s

sig
bias fVC4

2/T

V
C

dt

dV
CI ⋅⋅⋅=⋅=⋅=
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Case 2: 100% Linear Settling

• Much worse

– E.g. N=6.9 for settling to 0.1% precision

sigB fSNRTkN16P ⋅⋅⋅⋅=∴

( )[ ]
τ

τ sig/t
sig

maxmax
bias

V
Ce1V

dt

d
C

dt

dV
CI ⋅=−⋅=⋅= −

τ
2/T

N s=Number of settling time constants:
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Limit Lines
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Discussion

• Orders of magnitude away from limits

• Slope of limit lines is much steeper than fit to experimental data

• What contributes to these large gaps?

– Must keep in mind that ADCs are not just a single capacitor 
circuit…

• The following analysis factors in practical considerations

– Not fundamental, but somewhat unavoidable in today's 
implementations 
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Design Space Partitioning

• High SNR

– Complexity ~1 (e.g. first integrator in sigma-delta ADC)

– Limited by thermal noise

• Moderate SNR

– Complexity ~Bits (e.g. pipelined ADC)

– Partly limited by thermal noise

• Low SNR

– Complexity ~2Bits (e.g. flash ADC)

– Limited by matching, quantization noise
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High SNR SC-Stage (1)

• Considerations
– Noise is multiple of kBT/C (nf)
– Swing is only a fraction of VDD (α)
– Feedback factor (β)
– gm/ID is upper bounded if slewing must be avoided

gm1
C

gm2

φ2 φ1'

φ1
C

C

Vbias

VDD

Vout

Vin

  1

Ibias

Cg
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High SNR SC-Stage (2)

• Graph on following slide shows result assuming

– nf=5, α=2/3, β=0.5, onset of slewing 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅
⋅⋅⋅⋅⋅⋅⋅=∴

sig
bias

1m
sigBf

V
I
g

1
,1maxfSNRTk

1
nN16P

βα

sigbias

1m

V

1

I

g

⋅
≤
βTo avoid slewing:
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High SNR SC-Stage (3)
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• Close to experimental data at high SNDR!
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Medium SNR

• Consider two cases

• Pipeline ADC using SC stages

– Partially limited by thermal noise

• Continuous time Gm-C integrator

– Limited by distortion
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Pipeline ADC

• Theoretical near optimum power scaling
– Scale capacitance by gain of preceding stage
– Stage 1 consumes half of total power
– Adding one bit means power goes up 4x

• Caveat
– Usually impractical to scale capacitors down to C/2m

22 2

C C/2 C/4 C/2m

2

MSB LSB

EE 315 Lecture 18B. Murmann 24

Stage Scaling Example

• Example is simplistic, but in line with state-of-the art

– 10bits ~0.5mW/MSample/s, 12bits ~2mW/MSample/s

Number of Amplifiers 13 12 11 10 

1 1/4 1/16 1/64 
1/2 1/8 1/32 1/128 
1/4 1/16 1/64 1/128 
1/8 1/32 1/128 1/128 
1/16 1/64 1/128 1/128 
1/32 1/128 1/128 1/128 
1/64 1/128 1/128 1/128 

1/128 1/128 1/128  
1/128 1/128   

Stage Capacitances 

1/128    

ΣC 2.03 0.54 0.17 0.086 

Csingle 1/2 1/8 1/32 1/128 

Relative Power 
Pipeline/Single SC Stage 

(ΣC/Csingle) 
4.06 4.32 5.44 11.01 
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Pipeline ADC Limit Line
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Gm-C Integrator

• Only a small fraction of bias current can be steered into load

– E.g. IM3=60dB, ηcur=10%

VDD VDD

Ibias

vid/2 -vid/2

CC

iod

2

ov

max,id
3 V

v

32

3
IM ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≅

bias

max,od
cur I

i
=η

3
ov

max,id
cur IM

3

32

V

v
=≅η
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Gm-C Limit Line
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Low SNR

• Power of matching limited class-B circuit [Kinget, CICC 1996]

2

Vos

rms,sig
sig

2
VTox 3

V
fAC24P ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅⋅⋅⋅=
σ

• Refined result for flash ADC, assuming
– Class-A, 1/2 LSB matching with 3σ-confidence, 2B components, additional 

Edyn per clock cycle, partial supply usage (α)

sig
B

dyn
B32

VTox f2E22AC
1

12P ⋅⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅+⋅⋅⋅⋅=

α
π

• Example: α=2/3, Cox=15fF/μm2, AVt=3mV·μm, Edyn=60fJ (~10gates in 
0.13μm CMOS)
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End Result
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Discussion

• Shown results include only minor assumptions about technology 

• Scaling brings some good, some bad news offsetting each other

– Lower VDD, lower Vswing/VDD, …

+ Lower Edyn, higher ft enables moderate/weak inversion 
operation with high gm/ID,…

• Limit lines won't move much, unless someone hands us a new 
disruptive technology
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Future Opportunities

• More intelligent ADCs

– Improved average power dissipation by adapting to 
instantaneous speed/resolution requirements

• "Minimalistic" ADCs using significantly simpler circuits

– Digital compensation of resulting non-idealities

– Digital postprocessing is (within limits) "free" in terms of area 
and energy

EE 315 Lecture 18B. Murmann 32

Digital Logic Energy Trend

Mainstream ADC technologies, standard logic library data
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ADC/Digital Logic Energy Ratio
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Energy Ratio in 2007

2,396,04590

299,47970

37,43250

4,67930

EADC/ENAND2SNDR

Additional digital 
processing is costly!

• Interpretation for digitally enhanced ADCs (energy centric)

Use as many gates as you 
can fit…

Several tens of thousand 
gates are "free"
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Digital Logic Gate Density Trend
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Data Converter Testing

Boris Murmann
Stanford University

murmann@stanford.edu

Copyright © 2008 by Boris Murmann

EE 315 Lecture 19B. Murmann 2

Just Got Silicon Back...

• Now what ?

• Practical aspects of converter 
testing

• Equipment requirements

• Pitfalls
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ADC Test Setup

ADC
Vin PC

Signal
Generator

Clock
Generator

Data
Acquisition

Evaluation 
Board?

How to get 
data across?

Specs?

Specs?
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State-Of-The-Art ADC (2001)

• Your converter will perform even better...

• Testing a high performance converter may be just as challenging as 
designing it!

• Key to success is to be aware of test setup and equipment limitations

[W. Yang et al., "A 3-V 340-mW 
14-b 75-Msample/s CMOS ADC 
with 85-dB SFDR at Nyquist 
input," IEEE J. of Solid-State 
Circuits, Dec. 2001]
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Signal Source

• Want: SFDR>85dB @ fin=fs/2=37.5MHz

• Let's see, how about the "value priced" signal generator we 
have in the lab...

• f=0...15MHz
• Harmonic distortion (f>1MHz): 

-35dBc
• Need something better...

EE 315 Lecture 19B. Murmann 6

A Better Signal Source

• OK, now we've spent about $40k, this should work now... (?)

• f=100kHz...3GHz
• Harmonic distortion (f>1MHz): 

-30dBc !
• No way to produce the sine 

wave we need without a filter!
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Filtering Out Harmonics

• Given HD=-30dBc, we need a stopband rejection > 60dB 
to get SFDR>90dB

0 ... f

Amplitude

BP Filter

fin

...

2fin 3fin 4fin
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Available Filters

• Want to test at many frequencies -> Need to have many 
different filters!

www.tte.com, or
www.allenavionics.com
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Tunable Filter

www.klmicrowave.com
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Filter Distortion

• Beware: The filters themselves also introduce distortion

• Distortion is usually not specified, need to call manufacturer

• Often guaranteed: HD<-85dBc, 

• Don't trust your filters blindly... 
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Clock Generator

• OK, may be for the clock a "value-priced" signal generator will 
suffice...

• No! The clock signal controls sampling instants – which we 
assumed to be precisely equidistant in time (period T)

– See Lecture for a dscussion of aperture uncertainty

• Typically use sine wave and "square up" with inverter chain

– Jiiter requirements ⇔ sine wave specs

Clock
Generator

50

ADCBoard

CLK
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Phase Noise and Jitter

• Can use the above equation to get a (very rough) jitter estimate
from phase noise spectrum

• "Value Priced" Signal Generator:

– L(30kHz)=-55dBc/Hz -> τ(fo=15MHz) = 230ps rms

• "$40k" Signal Generator:

– L(30kHz)=-122dBc/Hz -> τ(fo=15MHz) = 0.1ps rms  -> OK!

⎥⎦
⎤

⎢⎣
⎡⋅⋅

Δ
⋅= ⋅Δ

Hzf

f

f
HzfL 1

10
1 20/][)(

00

τ

Phase Noise at offset
Δf from "carrier"

"Cycle to cycle jitter"

[Hajimiri, The Design of Low Noise 
Oscillators, p.147, Kluwer 1999]
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More on Jitter

• Once we have a good enough generator, other circuit and test 
setup related issues may determine jitter

• Usually, clock jitter in the single-digit picosecond range can be 
prevented by appropriate design techniques

– Separate supplies

– Separate analog and digital clocks

– Short inverter chains between clock source and destination

• Few, if any, other analog-to-digital conversion non-idealities 
have the same symptoms as sampling jitter

– RMS noise proportional to input frequency

– RMS noise proportional to input amplitude

• So, if sampling clock jitter is limiting your dynamic range, it’s 
easy to tell, but may be difficult to fix...

EE 315 Lecture 19B. Murmann 14

Jitter Estimation

• Reference
– D.M. Hummels, W. Ahmed, W., F.H. Irons, "Measurement of 

random sample time jitter for ADCs," Proc. ISCAS, pp.708-711, 
May 1995.

After removal of harmonics:

Spectrum of squared sequence 
contains a tone proportional to jitter:
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Evaluation Board

• Planning begins with converter pin-out

– Uhps, my clock pin is right next to a digital output...

• Not "black magic", but weeks of design time and "thinking"

• Key aspects

– Supply/ground routing

– Bypass capacitors

– Coupling between signals

• Good idea to look at ADC vendor datasheets for example 
layouts/schematics/application notes

EE 315 Lecture 19B. Murmann 16

Vendor Eval Bord Layout

[Analog Devices AD9235 Data Sheet]
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One Thing to Remember...

• A converter does not just have one "input"

– Clock

– Power supply, ground

– Reference voltage

• For good practices on how to avoid issues see e.g.

– Analog Devices Application Note 345: "Grounding for Low-
and-High-Frequency Circuits"

– Maxim Application Note 729: "Dynamic Testing of High-
Speed ADCs, Part 2"

EE 315 Lecture 19B. Murmann 18

How to Get the Bits Off Chip?

• "Full swing" CMOS signaling works well for fCLK<100MHz

• But we want to build faster ADCs...

• Alternative to CMOS: LVDS – Low Voltage Differential Signaling

• LVDS vs. CMOS:

– Higher speed, more power efficient at high speed

– Two pins/bit!

Analog Devices Application Note 586: "LVDS Data Outputs for High Speed ADCs"
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LVDS Outputs

Analog Devices Application Note 586: "LVDS Data Outputs for High Speed ADCs"

EE 315 Lecture 19B. Murmann 20

Data Acquisition

• Several options:

– Logic analyzer with PC interface

– FIFO board, interface to PC DAQ card

– Vendor kit, simple interface to printer port:

[Analog Devices, High-Speed ADC FIFO Evaluation Kit]
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Complete Setup

[Maxim Application Note 729: "Dynamic Testing of High-Speed ADCs, Part 2]
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Post-Processing

• LabView (DAQ Software Toolbox), Matlab
– Some vendors provide example source code
– See e.g. Maxim Application Note 1819: "Selecting the Optimum 

Test Tones and Test Equipment for Successful High-Speed ADC 
Sine Wave Testing"

• We know how to evaluate spectral metrics
– How about DNL/INL?

• DAC
– "Trivial", apply codes and use "a good voltmeter" to measure 

outputs

• ADC
– Need to find "decision levels", i.e. input voltages at all code 

boundaries
– One way: Adjust voltage source to find exact code transitions

• "code boundary servo"

– More elegant: Histogram testing
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Basic Histogram Test Setup

Ramp

0

VREF

ADC PC

VREF

• DNL follows from total number of occurrences of each code

• Ramp speed is adjusted to provide e.g. an average of 100 
outputs of each ADC code (for 1/100 LSB resolution)

• Ramps can be quite slow for high resolution ADCs

(65,536 codes)(100 conversions/code)

100,000 conversions/sec
= 65.6 sec
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Histogram of Ideal 3 Bit ADC
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Histogram of Sample 3 Bit ADC
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DNL from Histogram (1)

• Step 1

– Remove “over-range bins”
(0 and 7) 
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DNL from Histogram (2)

• Step 2

– Divide by average count

• Step 3

– Subtract 1

– Ideal bins have exactly the 
average count, which 
corresponds to 1 after 
normalization

• Result is DNL
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INL from Histogram

• INL is simply running sum of 
DNL (see HW)

• The DNL information can 
also be used directly to 
construct the converter 
transfer function 

– Simply add up all bin-
widths to find transition 
levels
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DNL and INL of Sample ADC
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Sinusoidal Inputs

• Precise ramps are hard to 
generate

• Solution

– Use sinusoidal test signal

• Problem

– Ideal histogram is not flat 
but has “bath-tub shape”

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250
Raw Histogram of ADC Output

332



EE 315 Lecture 19B. Murmann 31

After Correction for Sinusoidal pdf
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Resulting DNL and INL
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Correction for Sinusoidal pdf

• References

– M. V. Bossche, J. Schoukens, and J. Renneboog, “Dynamic 
Testing and Diagnostics of A/D Converters,” IEEE TCAS, 
Aug. 1986.

– IEEE Standard 1057

• Is it necessary to know the exact amplitude and offset of the 
sine wave input?

– No!

• There exists a great deal of confusion about this in the converter 
community...
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DNL/INL Code

function [dnl,inl] = dnl_inl_sin(y);

%DNL_INL_SIN

% dnl and inl ADC output

% input y contains the ADC output

% vector obtained from quantizing a

% sinusoid

% Boris Murmann, Aug 2002

% Bernhard Boser, Sept 2002

% histogram boundaries

minbin=min(y);

maxbin=max(y);

% histogram

h = hist(y, minbin:maxbin);

% cumulative histogram

ch = cumsum(h);

% transition levels

T = -cos(pi*ch/sum(h));

% linearized histogram

hlin = T(2:end) - T(1:end-1);

% truncate at least first and last 

% bin, more if input did not clip ADC

trunc=2;

hlin_trunc = hlin(1+trunc:end-trunc);

% calculate lsb size and dnl

lsb= sum(hlin_trunc) / (length(hlin_trunc));

dnl= [0 hlin_trunc/lsb-1];

misscodes = length(find(dnl<-0.9));

% calculate inl

inl= cumsum(dnl);
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DNL/INL Code Test

% converter model

B = 6;  % bits

range = 2^(B-1) - 1;

% thresholds (ideal converter)

th = -range:range; % ideal thresholds

th(20) = th(20)+0.7; % error

fs = 1e6;

fx = 494e3 + pi; % try fs/10!

C  = round(100 * 2^B / (fs / fx));

t = 0:1/fs:C/fx;

x = (range+1) * sin(2*pi*fx.*t);

y = adc(x, th) - 2^(B-1);

hist(y, min(y):max(y));

dnl_inl_sin(y);
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Limitations of Histogram Testing

• The histogram test (as any ADC test, of course) characterizes 
one particular converter
– Must test many devices to get valid statistics

• Histogram testing assumes monotonicity
– E.g. “code flips” will not be detected.

• Dynamic sparkle codes produce only minor DNL/INL errors
– E.g. 123, 123, …, 123, 0, 124, 124, …
– Must look directly at ADC output to detect

• Noise not detected or improves DNL
– E.g. 9, 9, 9, 10, 9, 9, 9, 10, 9, 10, 10, 10, …

• Reference
– B. Ginetti and P. Jespers, “Reliability of Code Density Test 

for High Resolution ADCs,” Electron. Letters, pp. 2231-2233, 
Nov. 1991.
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Hiding Problems in the Noise

• INL looks a lot like there 
are 5 missing codes

• DNL "smeared out" by 
noise!

• Always look at both 
DNL/INL

• INL usually does not lie...

[Source: David Robertson, Analog Devices]
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Layout Considerations

Boris Murmann
Stanford University

murmann@stanford.edu

Copyright © 2008 by Boris Murmann
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Overview

• Impact of device mismatch

– Linearity of mulit-bit DACs, uncalibrated pipeline ADCs, …

– Finite common mode and supply rejection

– Offset and offset drift; important e.g. in bandgap references

• Noise and decoupling

– Capacitive coupling, inductive coupling (bond wires)

– Supply coupling
• Separate supplies for analog and digital

– Substrate coupling

• Floorplanning

– Organize the layout to minimize device mismatch and 
coupling effects
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Device Mismatch Mechanisms

• Wafer-to-Wafer, Batch-to-Batch variations

• Spatial effects

– Long distance
• Gradients

– Short distance
• Statistics

• Circuit dependence

– Differential structures
• Differential pair

• Current mirror

– Bias

• Layout dependence
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References

• M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, 
"Matching properties of MOS transistors," IEEE J. of Solid-State 
Circuits, vol. 24, pp. 1433-1439, October 1989. 

– Mismatch model

– Statistical data for 2.5μm CMOS

• Jeroen A. Croon, Maarten Rosmeulen, Stefaan Decoutere, Willy 
Sansen, Herman E. Maes, "An easy-to-use mismatch model for 
the MOS transistor," IEEE J. of Solid-State Circuits, vol. 37, pp. 
1056 - 1064, August 2002.

– 0.18μm CMOS data

– Qualitative analysis of short-channel effects on matching

• C. H. Diaz et al., "CMOS technology for MS/RF SoC," IEEE 
Trans. Electron Devices, pp. 557-566, March 2003.

– More recent matching data
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Mismatch Modeling

• Experimental result applies to 
one particular configuration

• What about:
– Device size

• W
• L
• Area

– Bias
• VGS

– Physical proximity
– …

• Need parameterized model

M2M1

%1=
Δ

D

D

I

I

Experiment:
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Mismatch Model

• Second term due to distance parameter is usually small

– Unless Dx >> 10…100μm 

• Can use "common centroid layout" to make Dx=0

– Helps cancel process gradients

• Assuming that we've done everything right, we are left with local 
random variations, governed by AP

( ) 22
2

2
xP

P DS
WL

A
P +=Δσ

( )

parameter distance measured      :S

parameter area measured      :A

centers device between distance      :D

area device      :WL

P paramter of variance      :P

P

P

x

2 Δσ
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Basic Rules for Matching

• Use the same W and L and use M unit devices to generate 
current ratios (takes out ΔW and ΔL effects)

• Use M factors that are even, preferably factors of 4 (to avoid 
anisotropy effects)

• Use common-centroid, or nearly common-centroid, layout (takes 
out systematic gradients, e.g. oxide thickness and doping)

• Use dummy devices at the edges of the array (takes out etch 
loading effects)

• Keep matched devices away from power sources (>50mW)

• Ensure clean and well balanced routing
– Avoid having contacts/vias or irregular metal routing patterns 

over matching sensitive devices

• Route currents to bridge long distances, not voltages - IR drops 
can cause big systematic mismatches

EE 315 Appendix 1B. Murmann 8

Orientation Effects

• Si and transistors are not 
(perfectly) isotropic
– Stress induced mobility variations: 

several percent error

– Tilted wafers: ~5% error

• Make sure to have same direction 
of current flow in each device!
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Common Centroid Layout

• Reference

– Hastings, The Art of Analog Layout, Prentice Hall, 2001

• Determine groups of matched components

– Depends on circuit function
• All transistors in a mirror

• Diff-pair and load in an amplifier
– Should they be matched individually or jointly?

• Divide into segments

– Based on unit elements, if there is a common divisor

– Avoid small (<70%) fractional elements if no common divisor 
exists

• Example: Need matching resistors of 39.7k and 144.5k
– 144.5=3.68*39.7  (3 unit devices, plus 0.68*unit device)

– 144.5=10.92*(39.7/3) (10 unit devices, plus 0.92*unit device; better choice)

EE 315 Appendix 1B. Murmann 10

Common Centroid Rules (1)

• Coincidence

– Center of all matched devices should coincide, at least 
approximately

• Symmetry

– Along X and Y axis

– Symmetry lines of ABAB pattern do not line up!

• Dispersion

– Segments of each device should be distributed throughout 
the array as uniformly as possible 

• Reduces sensitivity to higher order (nonlinear) gradients

– One dimensional examples
• ABBAABBA: 3 repetitions

• ABABBABA: 1 repetition
– Has higher dispersion (preferable)
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Common Centroid Rules (2)

• Compactness
– Make array as compact as possible and approximately 

square
– 2D patterns achieve best symmetry

• X symmetry comes from interdigitation, and does rely on unit 
device symmetry 

• Example patters

DASBD DASBDBSAD DASBDBSAD 

DBSAD DBSADASBD DBSADASBD

DASBDBSAD

DBSADASBD

• In some cases, 2-D common centroid creates too much routing 
overhead, which violates rule of compactness
– E.g. resistors, which are hard to arrange as "square" 

elements
– Sometimes better off with simple 1-D pattern
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Dummy Cells

• Watch out for capacitor mismatch due to routing imbalance!

C1

C2

C2

C1
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MIM Capacitor Mismatch

• E.g. capacitor with A=33μmx33μm

– C≅1.1pF

– 1/sqrt(A)=0.03μm-1

– 3-σ Mismatch=0.03%

[Diaz]

0.13μm CMOS process
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Routing Imbalance at Latch Output

• Regenerative latch

• C1 ≠ C2 causes dynamic offset

• Can show Vos ≅ 0.5·ΔC/C·(V(t=0)-Vt)

– Nikoozadeh & Murmann, IEEE TCAS II, Dec. 2006.

• Example

– 0.5·10fF/100fF·(1V-0.5V)= 25mV (!)
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Vt Mismatch

• In 0.18μm, Tox=6.5nm, AVt ≅ 3mVμm

– Means that a differential pair will have σ(ΔVt) of about 3mV if 
the gate area of each transistor is 1μm2

– Again, this assumes that we've done a very good job in 
eliminating gradients and all other potential systematic errors 

( )
WL

A
V

2
Vt

0t
2 ≅Δσ

[Diaz]
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Example: Current Mirror
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• Example for 0.18μm technology: AVt ≅ 3mVμm, Aβ ≅ 1%μm, 
W=10μm, L=0.18μm, gm/ID=10V-1
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• Lower gm/ID (higher VGS-Vt) results in improved matching
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Capacitive Coupling

• Can use decoupling capacitors to reduce the amplitude of noise 
coupling into bias nodes

• If noise is "deterministic" and occurs at the right point in time, 
you might be better off not decoupling, but making the bias node
"fast" so it can recover quickly!

V
x

Low cap:
fast recovery

High cap:
slow recovery

big bounce

small bounce

t

t

V
x
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Shielding

• Can attenuate capacitive coupling by shielding sensitive signals
with traces running along their side, or underneath

– Usually creates additional capacitive load!

• For differential signals, it is often sufficient to route the traces 
close to each other and make sure that any coupling will appear 
as a common mode signal

• Obvious guideline

– Keep digital signals away from sensitive analog nodes

• In SC circuits, most sensitive nodes to watch out for are charge
conservation nodes (e.g. op-amp inputs)

– Any moving node that couples in via parasitic cap will 
modulate charge and therefore inject noise…
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Substrate Types

"Epi Substrate"

EE 315 Appendix 1B. Murmann 20

Epitaxial Substrate

D. K. Su, M. J. Loinaz, S. Masui, and B. A. Wooley, "Experimental results and modeling techniques for substrate 
noise in mixed-signal integrated circuits," IEEE Journal of Solid-State Circuits, vol. 28, pp. 420 - 430, April 1993.
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Observed Waveforms

• Current disturbance roughly ± 1% 

EE 315 Appendix 1B. Murmann 22

Coupling vs. Distance

• Essentially independent of distance!

– Why?
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Current Flow in Epi-Substrate

• Majority of current 
flows in low-resistivity 
wafer

• Coupling is very 
weak function of 
distance

(Setup as in slide 26)
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Guard Ring
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Effect of Guard Ring

Large guard 
rings increase 
coupling!

Epi substrate

w

w/o
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Backside Contact
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Noise vs. L4

EE 315 Appendix 1B. Murmann 28

Summary (Epi-Substrate)

• Closely modeled by a "single node"  

• The most effective way to reduce coupling in Epi-substrates to is 
to provide a good, low inductance backside contact

• Unfortunately distance and guard rings don't help much in 
reducing coupling

• If you decide to use guard rings, make sure to use dedicated 
guard ring potentials

– Otherwise guard rings may increase coupling! 
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Current in High Resistivity Substrate

Current trough p+ channel stop

EE 315 Appendix 1B. Murmann 30

Coupling vs. Distance

(Epi)
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Effect of Guard Rings

(Epi)

Breaks p+ 
channel stop 
implant
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Summary (Lightly doped substrate)

• Distance and guard rings can help reduce coupling significantly

• Must connect guard rings to quiet, dedicated potentials

– Otherwise they may inject noise!

• Isolation and coupling effects are highly layout dependent

– If substrate coupling is critical, the designer should invest a 
good amount of time to think about potential issues and 
solutions

• CAD tools?

– Still being developed/finding commercial use
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Solid-State Circuits, vol. 29, pp. 226 - 238, March 1994.

• Kuntal Joardar, "A simple approach to modeling cross-talk in integrated 
circuits," IEEE Journal of Solid-State Circuits, vol. 29, pp. 1212 - 1219, 
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Floorplanning and I/O (1)

• A common mistake is to do a great job of laying out lots of little 
cells but then make a big mess when pulling the design together

• A good floorplan is essential to being able to quickly make a 
good layout with few iterations.

• A floorplan is an evolving document that helps the designer 
organize the chip into pieces that fit together well
– Don’t be afraid to change it as you go along and discover 

new issues, just start out with one so you don’t miss the 
obvious things that can be very painful later.

• When generating a floorplan, keep the ultimate test setup in 
mind
– If you have to cross sensitive and noisy signals, it’s best to 

do it on chip where you only get a few femto Farads of 
coupling rather than doing it on the board where you will get 
much more coupling.

353



EE 315 Appendix 1B. Murmann 35

Floorplanning and I/O (2)

• Bond wire and package traces have inductance and resistance. 
By putting multiple pins in parallel, you can reduce these 
parasitics.
– Unfortunately, mutual inductance of neighboring pins fights 

the reduction. The inductance of two adjacent pins is about 
0.7 times that of one, and for three pins, you get about 0.5 
times the inductance of one pin. 

• Final bit of advice: Know when to stop! You can easily get so 
carried away with these issues that your layout takes a very long 
time to complete
– The key is to do what is right for an application

• An RF mixer should minimize capacitance

• A 14-bit A/D converter needs well a very balanced layout

– Use your own judgment and ask critical questions!
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Sample Floorplan (ADC)
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Outline

• Brief Introduction

• Designing Filter Transfer Functions

• Implementation: Biquad vs. Ladder

• Choosing a Topology

– Active RC

– Gm-C

– Switched capacitor

• Circuit Design Challenges & Examples

EE 315 Appendix 2B. Murmann 4

What is a filter?

H(f)
x(t) y(t) = modified x(t)

Filter

Y(f)=H(f) X(f)

• Filtering is the process of altering the frequency 
content of a signal 
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Why Study Analog & RF Filters?

Radio, Radar, 
Sensors, 
Actuators

Gain, Filters, 
Frequency 
Conversion

Real World 
Signals

Analog 
Processing

D/A

A/D
DSP

Digital 
Processing

Data 
Converters

Audio 
Video 
Data

• Data Converters will always be needed to bridge the gap 
between the  digital and real worlds. Filters are needed 
to band-limit before A/D and re-construct after D/A. Often 
systems require even more filtering in the Analog 
Processing block.
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Filters are Everywhere

• Audio

– IPOD, Speakers, Stereo (treble & bass boosting), CD 
Players, Speech Processing

• Video

– Cameras, HDTV, XBOX, PSP

• Communications

– Cell phones, wireless, modems, Ethernet

• Medical, Industrial & Scientific Instrumentation

– Ultrasound, Radar, pacemakers, hearing aids

• Other

– Storage Media, Toys, Appliances
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Lowpass Filter (LPF)

• Typical applications: noise removal, image attenuation, 
interpolation, amplifier stabilization, data smoothing or averaging

f

|H(f)|

fp

Pass Band Stop BandTransition 
Band

fs

passband ripple

stopband ripple

roll-off rate stopband attenuation

1
Insertion Loss

Ideal
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Highpass Filter

• Typical Applications: DC blocking, edge detection or 
enhancement

f

|H(f)|

Pass BandStop Band Transition 
Band

Ideal

fpfs

Insertion Loss Passband Ripple

Insertion Loss

fc
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Bandpass Filter (BPF)

• Bandpass filters are typically used to tune in to a specific 
channel (radio, TV, etc)

f
fo

1=0dB

|H(f)|

-3dB
Δf

Q =
Δf

fo
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Bandstop, Bandreject, Notch Filter

• Typically used to remove noise at a particular frequency, e.g. 
60Hz noise from a power supply.

f

0dB

fnotch

|H(f)|
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Allpass Filter

frequency

|G|

G1

• Allpass filters create a frequency-dependent phase shift. 

• Typically used for delay equalization.

frequency

180

fp

0

<G
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Filter Design Goals

• No insertion loss 

• Infinite stop-band rejection

• Linear phase

• Low noise, high dynamic range

• Cheap to manufacture, easy to build

• Insensitive to component variations

• Low power 

• Want it all, but in reality there are tradeoffs
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Filter Design Procedure

• Determine desired frequency response from system 
specifications.

• Typically use Matlab or quick hand calculations (if low order 
filter) to obtain a rational transfer function with left half plane 
poles that approximates the desired frequency response 

• Try to minimize the order of the filter (power & cost). Typically 
design transfer function with some margin for circuit parameter 
variations

• Realize the filter: tradeoffs in power, cost, performance 
determine what kind of realization is chosen

• Build the filter, considering circuit non-idealities 

EE 315 Appendix 2B. Murmann 14

Butterworth Summary

• Poles lie along a circle.

• No ripples (‘maximally 
flat’)

f

|H(f)|

f0

-90*n

Pole-Zero Plot 
example for n=3

-20dB*n/decade
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Chebyshev (Type I) Filter Summary

• Poles lie along an ellipse

Steeper transition band 
than Butterworth

More stopband
attenuation than 
Butterworth 

Passband ripples

More nonlinear phase 
than Butterworthf0

-90*n

Pole-Zero Plot 
example for n=4

f

|H(f)|
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Inverse Chebyshev Summary

• Ripples in passband
traded for ripples in  
stopband.

• Similar order to 
Chebyshev for same 
response.

• Very nonlinear phase 
response

f0

Pole-Zero Plot 
example for n=4

f

|H(f)|

<|H(f)|
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Elliptic Filters

• Ripples in passband and 
stopband

• Steeper transition band 
than Chebyshev

• Very nonlinear phase 
response

Pole-Zero Plot 
example for n=4

f

|H(f)|

f0

<|H(f)|
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Bessel-Thomson Summary

• Trades wider transition 
band and passband
attenuation for maximally 
flat delay in the passband

• No riginging or overshoot in 
step response

f

|H(f)|

f0

-90*n

Pole-Zero Plot 
example for n=2
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Comparison of Filters

• Comparisons based on

– Order of filter (cost)

– Passband response

– Stopband response

– Transition band

– Ease/cost of circuit implementation 

• In practice, all are about equally difficult to implement

• Difference in filter order (size and expense of components) 
matters most
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0.15 0.2 0.25 0.3 0.35 0.4
1

2

3

4
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6

7

8

Order Comparison

For 1dB ripple in the passpand, 20dB attenuation in the stopband, 
and wp=0.1:

O
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f F
ilt
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Chebyshev
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0 0.1 0.2 0.3 0.4 0.5
0
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0.4

0.6

0.8

1
Butter:n=6
Cheby1:n=4
Cheby2:n=4
Elliptical:n=3

Transfer Function Comparison for ws=0.17

|H(w)|

w
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What if we want a High Pass Filter?

If HLPF(s) is a  lowpass filter with cutoff frequency wc=1, then…

HHPF(s)= HLPF(wc/s) wc=desired cutoff of HPF

HBPF(s)=HLPF(                 ) wo=desired center frequency

B=w1-w2=desired width of

BPF or notch filter

Hnotch(s)=HLPF(                 )

s2+wo2

s*B

s2+wo2
s*B

Frequency Transformation  Summary
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Implementing Filter Transfer Functions

1) Cascade of Biquads

2) Ladder

H1(s) H2(s) HN(s)

H (s)= ΠHi(s), where Hi(s) is a second order transfer function.
i=1

N

In Out

OutIn
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Biquad Cascade Design

• Pole-zero pairing

– Assign the zero pairs to the closest pole pairs

• Section Ordering

– lowpass or bandpass biquad as first section to remove large 
interference

– In general, choose Q1<Q2<…<QN

H1(s) H2(s) HN(s) OutIn
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Biquad Cascade Summary

• Advantages

– Simple Configuration

– Easy Tuning

• Disadvantages

– More sensitive to component variations than a ladder

H1(s) H2(s) HN(s) OutIn
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Ladder Design (1)

Schaumann, Design of Analog Filters, Oxford University Press, 2001.
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Ladder Design (2)

• Replace passive elements (usually inductors, resistors) with 
active components (e.g. gm-C, switched capacitor)

• Often choose topology with minimum inductors, capacitors at 
input & output so parasitics are absorbed into these 
capacitances

• Main Advantage: less sensitive to component variations than a 
biquad implementation

• Without proper resistive termination, the sensitivity will be worse

• With resistive termination, may need a buffer to drive the next 
stage
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Choosing an Implementation 

1kHz 1MHz 10MHz 100MHz 1GHz 10GHz

Discrete analog 
active RC filters

Switched-capacitor active filters

Integrated active RC filters

Passive LC filters (discrete) Passive LC filters 
(integrated)

Distributed (waveguide) filters

Integrated active gm-C filters
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Overview: Topology Tradeoffs

• Opamp RC filters

– Good linearity, high dynamic range (60-90dB)

– RC product is difficult to control, typically needs tuning

– Medium usable signal BW <~10MHz

• Gm-C

– High frequency performance (>100MHz)

– Dynamic range not as high as opamp RC (40-70dB)

– Noise & distortion performance ~60dB

– Typically needs tuning

EE 315 Appendix 2B. Murmann 32

Topology Tradeoffs Continued

• Switched Capacitor

– Typically no tuning required (accurate integrated capacitor 
ratios and accurate clock frequencies)

– Noise & distortion performance ~ 90dB

– Frequencies limited by the clock frequency to ~<50MHz

• LC Filters

– Low power, low noise, high dynamic range (if inductors are 
ideal)

– Building inductors is costly (area)

– Performance degraded by the Q of the inductors
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Schreier, et al. “A 10-300MHz 
IF-Digitizing IC with 90-105dB 
Dynamic Range and 15-333kHz 
Bandwidth,” JSSC Vol. 37 No. 
12, December 2002.

LC first stage: 

Low noise & power, high 
dynamic range

Off-chip inductor is expensive 
and tuning is required.

Switched Capacitor final stage: No 
tuning required because of accurate 
capacitor ratios.

RC second stage: Reduced 
cost over LC and large 
dynamic range / low noise 

Example: "Neapolitan" Filter
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Active RC 1st Order Allpass

RCs

RCs

V

V
sH

in

out
AP

/1

/1
)(

+
−

−==

C
R

R

R

VoutVin
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Sallen Key 2nd Order Lowpass
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Active RC Filter Design

• Finite opamp gain and bandwidth shift the filter poles and create 
parasitic poles (hopefully out of band)

• Opamp slew rate conflicts with low power design, especially for 
large loads

• Dynamic range of opamp

• Opamp (and R) noise
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Gm-C 1st Order Allpass

2

1)(
m

m

in

out
AP

gCs

gaCs

V
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(1-a)C
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-

aC

gm2

+

-
-

Vin

Vout
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Gm-C 2nd Order Biquad
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Gm-C Filter Tuning I
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Gm-C Filter Tuning II

Replica
biquad

fref Phase
Detector

State
Machine

Gm-C
Filter
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Transconductor Implementation I

Transconductor Biasing & CMFB

J. Khoury, “Design of a 15-MHz CMOS Continuous-Time Filter with On-Chip 
Tuning”, JSSC Dec. 1991, p. 1988
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Transconductor Implementation II

Fc=63MHz, Vdd=5V, DR=68dB, CMRR=40dB, 77mW 

B. Nauta, “A CMOS Transconductance-C Filter Technique for Very High 
Frequencies”, JSSC Feb. 1992, p. 142.
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Transconductor Implementation III

4th order filter, 2.28mA@1.8V , IIP3=17.5dBm

S. D’Amico, “A 4.1mW 79dB-DR 4th order Source-Follower-Based Continuous-
Time Filter for WLAN Receivers”, ISSC 2006, p. 352.
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Gm-C Filter Design Challenges

• Power vs. Linearity 

• Dynamic range

• Tuning scheme

• Size of Capacitors / Noise
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Switched Capacitor 1st Order Allpass

RCs

RCs
sHAP

/1

/1
)(

+
−

−=

C
R

R

R

VoutVin

• Design Strategy: replace R’s in RC allpass with switched capacitors.

φ1φ1

φ2 φ2
C

φ1φ1

φ2 φ2

Vin

φ1φ1

φ2 φ2

Vout

CfCs

CfCs
sH

clk
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AP

/

/
)(

1

1

+
−

−=

C1

C1C1
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Switched Capacitor 2nd Order Biquad
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Designing Switched Capacitor Filters

• Start with active RC filter and replace the R’s with switched 
capacitors

• Use Matlab to design a transfer function in the discrete time 
domain.  Factor the z-domain transfer function and implement 
as a cascade of integrators, bilinear blocks and biquads

• Starting from a continuous time transfer function, use the 
bilinear transformation to transform to a z-domain transfer 
function

• Start with LC ladder prototype and substitute switched capacitor
circuits

EE 315 Appendix 2B. Murmann 48

Non-Idealities in Switched Capacitor Filters

• Opamp noise, kT/C noise

• Finite opamp gain creates gain and phase error

• Capacitor parasitics – use parasitic insensitive switching

• Opamp offset voltage – use correlated double sampling

• Charge injection and clock feedthrough

• Opamp bandwidth and slew rate
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Summary

• Filters will be around for a while

• Filter design comes with system level as well as circuit design 
challenges

• Despite a rich history, new circuit implementations, tuning 
schemes are still being explored

• This was a brief overview - we’ve really just scratched the 
surface!
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