

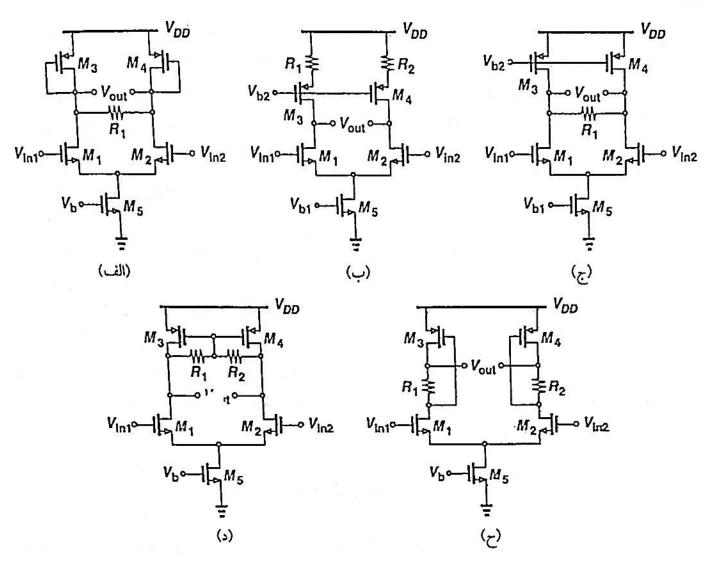
۷.۲ مسأله ۵-۴ را با جریان دنبالهٔ ۲۳۸۱ تکرار کنید و نتایج را مقایسه کنید.

 R_{ss} مدار شکل ۲۸.۴ را با فرض اینکه ۵/۰/ ۵۰ – ۵۵ – ۱/۲ (W/L) و ۲KΩ ج نمایانگر امپدانس خروجی یک منبع جریان NMOS با ۵/۰/ ۵۰ = R_{ss} باشد در نظر بگیرید. فرض کنید که R_{ss} نمایانگر امپدانس خروجی یک منبع جریان NMOS با ۵/۰/۵۰ و ۵/۳ (W/L) و جریان درین ۱۳۸۸ باشد. سیگنال ورودی شامل V_{II} (III/L) است که $V_{II}(I)$ و جریان درین ۱۳۸۸ باشد. سیگنال اور در شامل $V_{II}(I)$ است دامنه نویز با سر به سر $V_{III,CM} = 1/0$ ($V_{II}(I)$ است که $V_{II}(I)$ ($V_{III}(I)$ ($V_{II}(I)$) و جریان درین ۱۳۸۸ باشد. سیگنال ارودی شامل $V_{II}(I)$ ($V_{III}(I)$) و $V_{III,CM} = 10$ ($V_{III}(I)$) و جریان درین ۱۰۵ باشد. سیگنال $V_{III}(I)$ ($V_{III}(I)$) و جریان درین ۱۰۵ باشد. سیگنال $V_{III}(I)$ ($V_{III}(I)$) و جریان دامنه نویز با سر به سر $V_{III}(I)$ ($V_{III}(I)$) ($V_{III}(I)$) و جریان دامنه نویز با سر به سر $V_{III}(I)$ ($V_{III}(I)$) ($V_{IIII}(I)$) ($V_{III}(I)$) ($V_{IIII}(I)$) ($V_{III}(I)$) (V

۱۱.۴ فرض کنید که زوج دیفرانسیل شکل ۳۲-۱(الف) با ۰۵/۵/۵۵=۱/۲(*W/L*)، ۵/۰/۵۰=۱/۳(*W/L*) و ۱۱.۴ طراحی شده است. همچنین *Iss ب*ایک ترانزیستور NMOS که ۰۵/۵/۵۵=۱*۷(W/L)* است، ساخته شده است. (الف) اگر سوینگهای دیفرانسیل در ورودی و خروجی کوچک باشند، کمترین و بیشترین سطوح CM مجاز در ورودی کدامند.

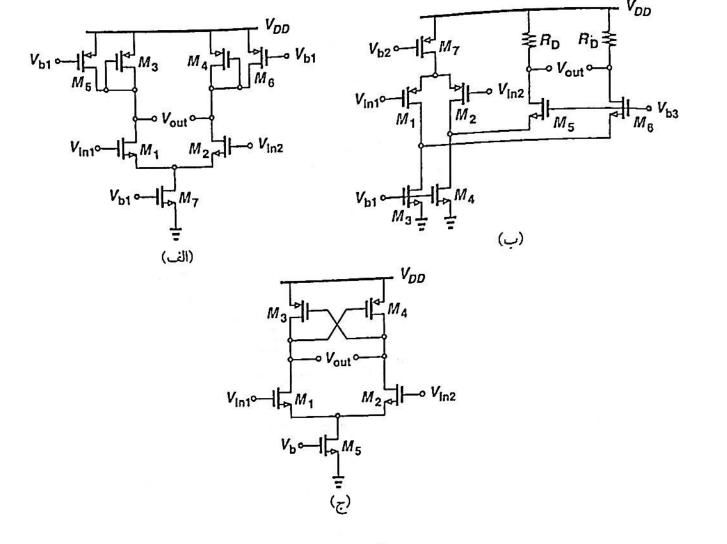
- ۱۲_۴ در مسالهٔ ۲_۱۱، فرض کنید که عدم تطابق بین ولتاژ آستانهٔ M_۱ و M_۲ برابر با ۱*m۷* باشد. CMRR چقدر است؟
 - ۱۳-۴ در مسألهٔ ۱۱_۴، فرض کنید که ۷۴ = ۱۰۴ ولی ۱۱۴ = ۱۴ باشد. CMRR را حساب کنید؟

$$\left(\frac{W}{L}\right)_{\tau/\tau} = \frac{\Delta \cdot}{\sqrt{2}} \int \left(\frac{W}{L}\right)_{1/\tau} = \frac{\Delta \cdot}{\frac{1}{\sqrt{2}}}$$

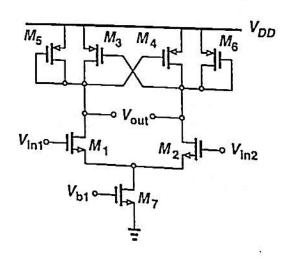

باشد حساب کنید. اگر _{ss} ابه حداقل /۴۱/ه روی آن نیاز داشته باشد، حداقل سطح CM مجاز در ورودی چیست؟ با استفاده از مقدار V_{in,CM}، سونیگ خروجی حداکثر را درهر حالت حساب کنید؟

I_{ss} = ۱mA در مدار شکل ۲۳۳۴، فرض کنید که برای همهٔ ترانزیستورها، ۵/۰/۵ = ۵/۱۷ است و ۱mA = ss (الف) بپرهٔ ولتاژ را حساب کنید. (ب) V_b را طوری حساب کنید که:

$$I_{D\Delta} = I_{DF} = \cdot / \Lambda \left(I_{ss} / \Upsilon \right)$$

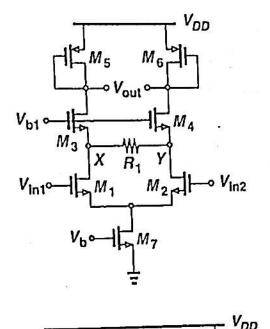

(ج) اگر _{sr} به حداقل ولتاژ ۷۴/۰ نیاز داشته باشد، حداکثر سوینگ دیفرانسیل در خروجی چیست؟ V_{in1} با فرض اینکه همهٔ مدارهای نشان داده شده در شکل ۳۸٫۴ متقارن هستند، سر را برحسب (الف) ۷_{in1} و ۱۶٫۴ وقتی که بطور دیفرانسیلی از ۲۰ تا V_{DD} تغییر میکنند و (ب) ۷_{in1} و ۷_{in۲} وقتی که برابر باشند و از ۲۰ تا V_{DD} تغییر کنند، رسم کنید.

۲۹-۴ با فرض اینکه همهٔ مدارهای نشان داده شده در شکل ۲۹-۴ متقارن باشند، ۷₀₀۷ را برحسب (الف) ۷_{in}۱ و ۱۷-۴ وقتی که بطور دیفرانسیلی از ۵ تا ۷_{DD} تغییر میکنند، رسم کنید (ب) ۷_{in}۱ و ۷_{in}۲ وقتی که برابر باشند و از ۵ تا ۷_{DD} تغییر کنند، رسم کنید.

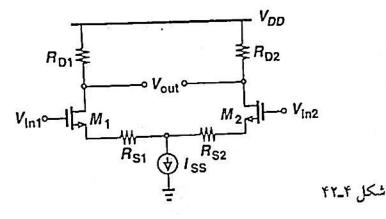


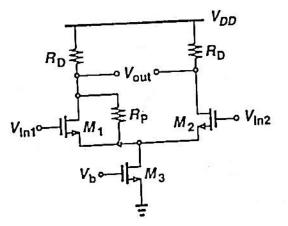
شکل ۲۸۴

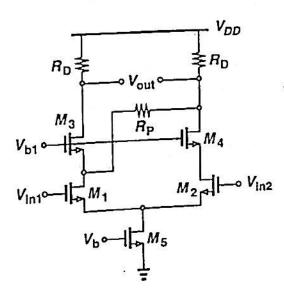
- ۱۸۰۴ فرض کنید که همهٔ ترانزیستورهای شکل ۲۹۸۴ و ۲۹۳۴ در اشباع باشند و ۵ ≠ ۶ بهرهٔ ولتاژ دیفرانسیل سیگنال کوچک هر مدار را حساب کنید.
 - ۱۹_۴ مدار شکل ۴_۴۰ را در نظر بگیرید. (الف) ₀₀₀ را برحسب _{۱۱۱} و ۷_{۱۱۲} و قتی که بطور دیفرانسیلی از ۵ تا _{DD} تغییر میکنند، رسم کنید. (ب) اگر ∞ = ۶۰ یک رابطه برای بهره ولتاژ بدست آورید. اگر ۱۸_{۶% ۱}۸۱۴ = ۲_{۳۱۴} باشد، بهرهٔ ولتاژ چقدر است؟
 - ۲۰-۴ برای مدار شکل ۲۱_۴ (الف)₀₀۷ و ۷_۲۷ و ۷۷ را برحسب ۷_{in۱} و ۷_{in۲} وقتی که بطور دیغرانسیلی از ۰ تا ۷_{DD} تغییر کنند، بدست آورید. (ب) بهرهٔ ولتاژ سیگنال کوچک دیفرانسیل را بدست آورید.
 - ۲۱_۴ با فرض اینکه مدار شکل ۲۴_۲۴ متقارن نیست و بدون استفاده از مدار معادل، بهرهٔ ولتاژ سیگنال کوچک (۷_{in۲} -۲۱_۴ (۱_{om})/(۷_{in۱}) را اگر ۰ = ۶ و ۰ ≠ ۲ باشد، بدست آورید.
 - ۲۲-۴ به دلیل خطاهای ساخت، یک مقاومت پارازیتی بین ترمینالهای درین و سورس M_۸ در شکل ۴۳-۴ بوجود آمد. است. با فرض اینکه ۰ = ۲ = ۶ بهرهٔ سیگنال کوچک، بهرهٔ مُد مشترک و CMRR را حساب کنید.
 - ۲۳-۴ به دلیل خطاهای ساخت، یک مقاومت پارازینی بزرگ درین های M_۱ و M_۲ در مدار شکل ۴۴-۴۴ پدیده آمده است. با فرض اینکه ۰ = ۷ = ۸ بهرهٔ سیگنال کوچک، مد مشترک و CMRR را حساب کنید.
 - ۲۴-۴ در مدار شکل ۲۵-۴، (۱۷/L) هنمهٔ ترانزیستورها ۵/۰/۵۵است و M_eو M_eباید در ناحیهٔ تریود عمیق و با مقاومت روشن ۲KΩ کار کنند. با فرض ۰ = γ = ۶ سطح مُد مشترک ورودی را که چنین مقاومتی را ایـجاد میکند،



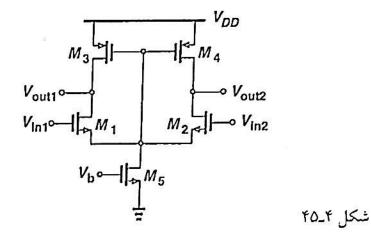
شکل ۲۹_۴




شکل ۴-۴



شکل ۲۱_۴



شکل ۴۳_۴

شکل ۴۴_۴

1411

مراجع

 P.R.Gray and R.G.Meyer, Analysis and Design of Analog Integrated Circuits, Third Ed., NeW York: Wiley, 1993

 B.Gilbert, "A Precise Four - Quadrant Multiplier With Subnanosecond Response," IEEE J.Solid -State Circuits, VoL.SC - 3, PP.365-373, Dec.1968

